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ABSTRACT 

SOIL-GRAPEVINE INTERACTIONS: INSIGHT FROM VERDICCHIO IN THE MARCHE 

WINE REGION, ITALY 

by 

Megan Luna Barlow 

The University of Wisconsin-Milwaukee, 2017 

Under the Supervision of Professor Barry Ian Cameron 

 

 

Verdicchio is a white grape varietal notably grown in the Marche wine region of east-

central Italy within two Denominazione Origine Controllata (DOCs); Castelli di Jesi and 

Matelica, located less than 50 km apart. Jesi lies in the Apennine foothills near the coast of the 

Adriatic Sea and produces a smooth wine noted with apple-pear undertones and crisp, clean 

acidity. Conversely, Matelica is located in a synclinal valley of a fold-and-thrust belt and 

produces stronger wine with penetrating floral aromas and bold acidity. While macro-climatic 

variations do exist between DOCs, this research focuses on geological variations, specifically 

variations in soil composition, and understanding how geology could affect the grapevine 

nutrient supply contributing to the distinct wine flavor characteristics noted between DOCs.  

In order to quantify variations in both soil and plants between DOCs, several soil and 

plant analyses were conducted. This study focused upon soil samples collected within eight 

vineyards, with a total of ten soil profiles, and ten grapevine stem samples collected next to each 

soil profile. Soil samples were analyzed for soil texture, pH, organic matter, mineralogy, 

elemental and oxide concentrations, plant available nutrients, base saturation, cation exchange 

capacity, macronutrient element concentrations (N, C, and P), and N isotopes (𝛿15N). Grapevine 

stem samples were also analyzed for macronutrient elements (N, C, and P) and N isotope 

composition (𝛿15N). The isotopic N ratios of grapevine stems and soil were used in a model to 
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assess N turnover within the individual grapevine samples, assuming literature values for amino 

acid turnover.  

This study provides insight as to how soil variations could influence wine character 

through quantifying soil-grapevine interactions. I speculated that differences in N isotopes for 

both soil and plants between DOCs would reflect different biological processes, with primary 

focus on the biological processes occurring within grapevine stems. N isotope fractionation in 

grapevine stems were interpreted to reflect rates of amino acid synthesis as grapevine stems 

(woody tissue) are used as sites for amino acid storage. The N turnover model (related to amino 

acids) calculated that Jesi had double the N turnover in comparison to Matelica throughout the 

growing season. I interpreted this higher rate of amino acid synthesis within Jesi grapevine stems 

to be a direct result of mineralogical differences measured between the two DOCs. The majority 

of Jesi soil profiles were determined to have dolomite (CaMg(CO3)2), while Matelica soil 

profiles lacked dolomite. As a magnesium carbonate, dolomite most likely contributed to Jesi’s 

higher soil Mg concentrations in comparison to Matelica. Mg is an important soil macronutrient 

acting as the coordinating ion of chlorophyll as well as activating many enzymes needed for 

plant vitality. Jesi grapevine stems were also analyzed as having increased P concentrations, 

possibly further promoting Jesi’s plant energy metabolism. Jesi’s higher soil Mg concentration 

and higher grapevine stem P concentrations could impact plant metabolic processes such as 

chlorophyll synthesis as well as phenolic compound character, specifically tannins, which are 

known to influence wine character. Previous studies have correlated wine tannin characteristics 

to certain soil compositions. This study improves our understanding of how geological variations 

impact plant biological processes, and in turn, accounts for the flavor dichotomy noted between 

Verdicchio wine from both Jesi and Matelica.  
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INTRODUCTION 

 

Terroir: A Brief History 

The French term, terroir, dates back to the 14th century in a time when Benedictine and 

Cistercian monks cultivated the land along the Côte d’Or in Burgundy, France. They used the 

term terroir when referring to certain top-quality wine-producing properties (Wilson, 2001). 

While the initial designation of “good” vs. “bad” terroir was primarily conducted through trial 

and error, science eventually revealed consistent elements that yielded favorable qualities for the 

production of fine wine. Terroir now commonly encompasses all physical parameters affiliated 

with the habitat of a grapevine intended for the production of wine and is sometimes referred to 

as the ‘terroir effect’, which 

include the disciplines of 

geology, geomorphology, 

soil, climate, and grapevine 

biology (Sequin, 1986: van 

Leeuwen, 2010). Terroir 

can be described based 

upon grape and/or wine 

characteristics through the 

scientific investigation of 

all terroir parameters, or a 

single terroir parameter. 

 

 
Figure 1: Study area in the Marche wine region of the two 

DOCs: Jesi (yellow) and Matelica (blue). Note the close 

proximity of the two DOCs. Sampled vineyards also shown. 
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Verdicchio: Legend and History 

The first Italian DOC was created in 1966, following the French example of labeling 

wine regions by appellations through laws created in the 1930’s (Bastianich and Lynch, 2002). 

DOCs were established to produce wine of regulated quality and commercial standards that 

could be controlled and advertised for global distribution. Moreover, DOCs guarantee the origin 

of grapes from certain areas (Bastianich and Lynch, 2002). In the old world, DOCs are typically 

created in viticultural regions where certain grape varietals thrive. This is commonly reflected 

and emphasized on wine labels that highlight regions versus grape varietals. This style of 

labeling requires prior knowledge of the wine region to understand the nature/variety of wine 

upon purchase.  

Out of the twenty regions in Italy, the Marche is latitudinally centralized in the peninsula 

and located along the east coast by the Adriatic Sea (Fig. 1). While the Marche is bound by the 

Adriatic Sea to the east, the west side of the region is bordered by the Umbro-Marchigiano 

Apennines (U-M). It is home to five provinces and hosts twelve DOCs. This study focuses on 

two of the twelve DOCs. The DOC, Verdicchio di Matelica, was established in 1967, while the 

DOC, Verdicchio dei Castelli di Jesi, was established soon after in 1968 (Bastianich and Lynch, 

2002). Though these DOCs were established ~50 years ago, the Marche has been cultivating 

Verdicchio for much longer. Verdicchio is an exceedingly well-established white grape varietal 

in Italy often described as one of Italy’s “most interesting” native white grapes and as a “white 

with the structure of a red” (Bastianich and Lynch, 2002). Verdicchio wine is often noted to be 

“green” in flavor with high acidity and “distinctly piney, resiny flavor, along with suggestions of 

sour apple, bosc pear, and green herbs” (Bastianich and Lynch, 2002). Though many wine 

enthusiasts agree with the above general wine profile of green fruit and herbs, Verdicchio di 
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Matelica is characterized as a slightly more powerful version of Verdicchio than Verdicchio di 

Jesi (Bastianich and Lynch, 2002). Verdicchio di Jesi has a smooth body and crisp clean acidity 

with apple, pear, green herb undertones, and bitter-almond finish (Bastianich and Lynch, 2002; 

Conte et al., 2006). Verdicchio di Matelica tends to be more muscular and firmly structured with 

penetrating floral aromas and bold acidity expressing more depth and minerality than Jesi 

(Bastianich and Lynch, 2002; Conte et al., 2006). Because of prestigious DOC regulations and 

Verdicchio’s distinct wine character dichotomy noted between the two DOCs, Verdicchio wine 

labels clearly print whether it was produced in Jesi or in Matelica.  

Jesi has an area of ~573 km2 compared to Matelica at ~157 km2, which is about 3.6x 

smaller than Jesi. In turn, Jesi produces a larger quantity of Verdicchio based on its greater area 

extent (Bastianich and Lynch, 2002). It is noted that Verdicchio wine grown in Matelica is more 

consistent and homogeneous due to its smaller yield compared to Verdicchio from Jesi (Conte et 

al., 2006). Because of this unequal Verdicchio distribution, Verdicchio from Jesi is more popular 

amongst general white wine drinkers resulting in slightly higher priced Jesi Verdicchio compared 

to Matelica (Bastianich and Lynch, 2002).  

Verdicchio grapevines have been identified through genetic testing as a relative of Trebbiano 

di Soave and Trebbiano di Lombardy, but more robust in flavor and aroma and is thought to have 

been introduced in the Marche region in the early 17th Century (Franzan, 2000; Bastianich and 

Lynch, 2002; Conte et al., 2006). The overall history of the Marche region is rich with mystery 

as to where Verdicchio was exactly was first cultivated, but this no doubt adds to the allure of the 

widely established Italian white grape varietal that is so distinctly different within the DOC’s of 

Jesi and Matelica.  
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BACKGROUND  

 While located less than 50 km apart, the DOCs of Jesi and Matelica exhibit pronounced 

variations in geology, climate, geomorphology, and soil, which will be introduced below. After 

the geologic overview, three sub-sections will be presented: 1) the basics of soil nutrients vs. 

plant available nutrients, grapevine: function anatomy, and phenology; 2) soil nutrients: their 

role in grapevine vitality, grapevine macronutrients and grapevine micronutrients; and 3) 

nitrogen isotopes: biological tracers. These three sub-sections will review the key components 

of soil-grapevine interactions with which to assist in latter understandings as to how these 

interactions could influence wine characteristics.  

Geology  

The geological and structural history of the Apennines spans over ~20 m.y. and spatially 

covers a length of 1,200 km throughout the middle of the Italian Peninsula as a direct result of 

south-eastward retrograde migration of the Adriatic trench and ongoing subduction (Cavinato 

and De Celles, 1999). The northeastern Apennines are dominated by fold-thrusting, while the 

southwestern part is dominated by extension (Cavinato and De Celles, 1999). The subduction 

occurring along the east is thought to be segmented and that the weight of the subducting slab 

has resulted in southward migration of the zone of subduction (Royden et al., 1987). The 

segmentation and configuration of the subducting plate is believed to be a large controlling factor 

of the surface deformation observed in the Apennine system due to foredeep-basin geometry and 

thrust-belt evolution (Royden et al., 1987).  

The U-M Apennines are mainly attributed to a foreland fold-and-thrust belt formed in the 

latest phase of the Alpine-Himalayan orogenesis (Conte et al., 2006). Overall, the U-M 

Apennines were tectonically created through two main phases: 1) compressional arc shaped folds 

and thrusts from the Alpine-Himalayan orogenesis in the late Miocene-Early Pliocene, 2) 
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extension creating multiple faults including NW-SE trending normal faults and major thrust and 

oblique faults in the late Pliocene-Pleistocene with some major thrust and oblique faults 

occurring as early as the Upper Miocene (Barchi, 1991; Conte et al., 2006). The U-M Apennines 

are characterized by parallel NE verging thrust anticlines forming two main ridges: 1) Marche 

anticlinal ridge located to the east, 2) U-M anticlinal ridge located to the west (Barchi, 1991; 

Conte et al., 2006). Both anticlinal ridges range between 1,000 and 1,700 m above sea level with 

a synclinal valley nestled in-between (Conte et al., 2006). The two anticlines merge to the south 

creating the Sibillini Mountains with peaks reaching nearly 2,500 m in elevation (Conte et al., 

2006). The DOC of Jesi and Matelica are separated by the Marche anticlinal ridge along with 

various faults. The DOC of Matelica is located within the synclinal valley between the two 

anticlinal ridges, while the DOC of Jesi is located to the east of the Marche anticlinal ridge of the 

Marche foothills stretching out towards the coast (Fig. 2).  

The geotectonic evolution of the U-M Apennines is divided stratigraphically into two main 

successions; the carbonate succession ranging from Early Jurassic to mid-Miocene and the 

siliciclastic succession ranging from Late Miocene to Pleistocene (Conte et al., 2006). The 

carbonate succession is attributed to deep-water deposition of pelagic limestone and marl 

formations during an extended time of extensional tectonics, while the siliclastic succession 

represents syn- and post-orogenic clastic deposits, which includes a wide variety of deposits such 

as the flysch sequences of the Marnoso-Arenacean and Laga Formations, the Gessoso-Solfifera 

Formations consisting of black shales and evaporites of the Messinian, the turbiditic silt and clay 

of the Colombacci Formation, and lastly, the ultimate emergence of the Apennine orogen 

represented by molasse, fluvial, lacustrine, and beach deposits (Conte et al., 2006). These 

siliclastic formations are dominantly found in the inter-mountain synclinal valley that hosts the 
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DOC of Matelica, whereas the DOC of Jesi occupies the gentle slope toward the Adriatic Sea 

(Conte et al., 2006). While Jesi and Matelica both primarily rest upon siliciclastic dominated 

bedrock, lithologic variations do exist. Conte et al. (2006) observed that Jesi Verdicchio grows 

upon three main types of rock formations: 1) silty clays occasionally interbedded with poorly 

cemented sandstones in the upper Pliocene, mostly in the lower, most open parts of the valleys, 

2) poorly cemented 

sandstones in thick 

turbidite beds 

intercalated with marls 

throughout in the mid 

and lower Pliocene 

primarily in the upper 

part of the valleys, and 

3) upper Miocene 

primarily consists of 

more or less clay-rich 

marls with marly  

limestones topped by 

Messinian evaporites. 

Conte et al. (2006) also 

noted that Matelica 

Verdicchio grows upon 

soil derived from 
Figure 2: Jesi is located at the base of the Apennine foothills 

stretching towards the Adriatic coast, while Matelica is situated 

within a synclinal valley located more inland. 
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limestones and marls ranging from lower to mid Miocene, capped by molasse and quartz-

micaceous turbiditic sandstones ranging from mid-upper Miocene, and were also found to be 

interbedded with pelitic marls. Thus, according to geologic research of Conte et al. (2006), 

Matelica soil tends to be more carbonate-rich than the soils of Jesi. It should, however, be noted 

the selected vineyards in Jesi for this study are located in the southern portion of the DOC, where 

pelagic limestones are abundant. Geology can vary significantly over small spatial scales and 

should always be tested regardless of literature.  

Climate and Geomorphology 

Knowing the tectonic evolution of the Marche aids in understanding the climatic and 

geomorphic variations noted between DOCs.  

Timing of fruit ripening is in large part related to local climate conditions (van Leeuwen, 

2010). Whereas microclimate variations exist between individual vineyards, this section will 

focus on the mesoclimate variation between DOCs. The geomorphic characteristics of Jesi and 

Matelica in part contributes to mesoclimate variability. Due to Jesi position, located at the base 

of the Apennine foothills and stretching out towards the Adriatic coast, it is situated at relatively 

low elevations compared to the DOC of Matelica, which is located within a synclinal valley of a 

fold-and-thrust belt at higher elevations (Fig. 2). Jesi enjoys a more marine climate based on a 

close proximity to the coast affected by warm air currents off the Adriatic Sea resulting in minor 

temperature excursions (Conte et al., 2006). The DOC of Jesi is relatively large and falls into two 

Köppen-Geiger climate classifications (Gimsing, 2014). To the north, a Cfa climate 

predominates with warmer temperatures, fully humid, and hot summer and the southern side of 

the DOC is dominated by a Cfb climate, identical to Cfa except for warm instead of hot summers 

(Gimsing, 2014). Selected vineyards for this study lie within the southern portion of the Jesi 
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DOC (Cfb climate). Matelica is located further inland and has a continental climate, situated in a 

NW-SE synclinal valley with north-south running air currents and experiences solar shading by 

the anticlinal mountain ranges (Conte et al., 2006). Moreover, the DOC of Matelica falls into a 

Cfb climate experiencing the same climate regime as the southern portion of the DOC of Jesi 

(Gimsing, 2014). According to data collected by the Agenzia Servizi Settore Agroalimentare 

delle Marche (ASSAM- Agricultural Agency of the Marche) within the years 1997-2003, Jesi 

experiences mean annual temperature fluctuations of 13-15°C compared to Matelica, which 

annually fluctuates between 13 and 14°C. During the critical summer months where fruit 

maturation takes place, Jesi temperatures fluctuates between 10°C to 14°C compared to 

Matelica, which fluctuates between 12°C-17°C, thus slightly warmer, but has greater 

temperature fluctuations in comparison to Jesi (Conte et al., 2006). As for annual precipitation, 

they experience similar values at ~900-1,100 mm/year (Conte et al., 2006). As a result of 

mesoclimate and geomorphic variations between the DOCs, Jesi vineyards typically harvests 

their Verdicchio grapes approximately 10-15 days earlier than their counterparts in Matelica 

(Bastianich and Lynch, 2002).  

Overall, soil profiles from selected vineyards in Jesi were sampled on steeper slopes (avg. 

10.6o) compared to soil profiles in Matelica sampled on more gentle slopes (avg. 6.2o). 

Variations in elevation, slope, and aspect is summarized in table 1, which was compiled through 

Geographic Information System (GIS) analysis. 
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Soil Profiles Elevation (m) Slope (o) Aspect (o) 

Jesi    

1 218 8.65 261 

2 165 15.35 330 

3 209 2.86 0 

4 330 19.69 25 

5 345 6.46 265 

Matelica    

1 460 8.65 171 

2 391 6.38 117 

3 409 5.71 180 

4 415 5.05 82 

5 422 5.44 67 

 

Soil 

Soil composition, structure, and texture varies tremendously across spatial scales and 

vertically within the soil layers. Soil is unique from area to area and varies within and between 

vineyards and across DOCs. Soil is derived from the weathering of parent materials; and is 

therefore sensitive to the composition of surficial sedimentary deposits or bedrock, when it is 

exposed at the land surface. Soil is also a product of its climate, soil organisms, topographic 

relief (geomorphology), and time (Jenny, 1980). These physical parameters have great impact on 

soil development, profiles, and patterns of soil quality and character (Sposito, 2008).  

As a heterogeneous medium, soil is a mixture of solids, liquids, gases, all interconnected 

with pore spaces (Sposito, 2008). The solid material of soil is a mixture of mineral and organic 

matter, which depends on lithologic, biologic, and climatic variations (Sposito, 2008). Soils are 

Table 1: Five soil profiles were excavated in each 

DOC.  Jesi vineyards are situated at a lower 

elevations from vineyards in Matelica ranging from 

165 to 345 m with a varying degree of slope and 

northerly aspect. Matelica vineyards are situated at 

higher elevations compared to Jesi vineyards ranging 

from 391 to 460 m with noticeably more gentle 

slopes and a south easterly apect. 
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typically rich in silica, SiO2, a common component of Earth’s continental crust. Elements Si and 

O can chemically combine with other cations to produce approximately fifteen common silicate 

minerals (Sposito, 2008). These silicates are subdivided into primary minerals, derived from 

parent material, and secondary minerals, which are precipitated out or an altered product of a 

primary mineral (Sposito, 2008). Soil primary carbonate minerals including calcite (CaCO3) and 

dolomite (CaMg(CO3)2) are not silicates, and are created through the chemical precipitation of 

carbonate compounds in marine settings and later uplifted onto the continent and later evolved 

into soil (Sposito, 2008). Secondary carbonate minerals are formed through the precipitation of 

carbonate material in situ within the soil column (Sposito, 2008). Secondary carbonates are 

typically found as precipitated nodules within the soil, hardened layers, filaments, clay or silt 

particles, or as mineral coating on soil grains (Sposito, 2008). Understanding the mineralogy of 

soil, thus the chemical composition of the soil, is critical to understanding soil geochemistry and 

how it can impact vine development and fruit ripening (van Leeuwen, 2010). Minerals and 

organic matter undergo physical, chemical or microbial alteration and may be transformed into 

plant-available nutrient forms. Unlike minerals, organic matter is continuously added into the 

soil both as an influx from above and below organic structures as well as the decay of dead 

microbial biomass and soil macro-organisms, all generally decomposed by heterotrophic 

microorganisms (Sposito, 2008).  

Soil Nutrients vs. Plant Available Nutrients 

Chemical composition and concentration of soil depends on soil mineralogy, pH, climate, 

geomorphology, soil depth, organic matter, and soil microbiology (Essington, 2004). pH affects 

mineral dissolution and transformations, while climate can determine rate of weathering through 

precipitation and solar energy influxes affecting soil temperature (Smeck et al., 1983; Essington, 
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2004; Gulbranson et al., 2011). Geomorphology affects erosional patterns in soil and soil texture, 

which greatly determines grain surface charge impacting cation exchange capacity (CEC) and in 

turn, nutrient immobilization (Essington, 2004). Plant nutrients also depend on soil depth and 

organic matter (including both overlying vegetation and soil organic matter), which also affects 

CEC (Essington, 2004). Soil microbiology plays a large role in nutrient transformations and 

organic degradation (Essington, 2004). While present in the soil, not all soil minerals are 

available for plant uptake. Plants commonly take up plant available nutrients found in soil 

solution and sometimes can take up some forms of mineral compounds. Soil solution is a 

dissolved solution of compounds released into the soil water and thus readily available for plant 

uptake through their roots (White, 2009). Soil mineralogy dictates elemental and oxide 

compositions and concentrations, whereas climate and pH exert a prominent control on the 

chemistry and reactivity of aqueous soil solutions; and thus largely controlling plant nutrient 

availability. According to White (2009), recommended soil pH for grapevines is between 5.5 and 

7.5 and grapevines grown outside of this soil pH range typically risk nutrient-deficiency or 

toxicity. Acidic soils have higher H+ concentrations, which would displace other positively 

charged plant nutrients (base cations) within negatively charged soil sites (CEC), resulting in 

most macro- and micro-nutrient deficiencies. Deficiencies can also occur at higher pH. High pH 

is typically associated with soils high in carbonate material, rich in cations Ca2+ and Mg2+ 

(Sposito, 2008). Availability of nutrients P, Fe, Cu, Zn, and Mn typically decreases under high 

soil pH (Essington, 2004).  

Plant species and genetics can influence nutrient uptake and nutrient requirements, but as 

this study focuses on a single grapevine varietal, Verdicchio, we can assume little plant varietal 

differences in nutrient uptake. Mycorrhizae, a special class of symbiotic fungi, infect plant roots 
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forming a precise anatomical configurations within or on the root tissue and develope a hyphal 

network that extends from the infected root to the surrounding soil. Mycorrhizal associations 

serve to increase plant nutrient and water acquisition via the fungal network in return for 

carbohydrates (organic compound) produced by the plant (Ehmke, 2017). Endomycorrhizae are a 

widespread type of mycorrhizae that grow inside the cortical cells of a root and develop 

branched-like structures called arbuscules, also known as arbuscule mycorrhizal fungi (AMF) 

(White, 2009). AMF are common in V. vinifera and release nutrients directly into the plant root 

cells (White, 2009). While plant available nutrients were analyzed, this study does not take into 

account variations in fungal associations (Brundrett, 2009; White, 2009). Plant available 

nutrients mediated by bacteria is discussed later on in the Macronutrient section: Nitrogen.  

Grapevine: Function, Anatomy, and Phenology 

Grapevines are photoautotrophs capable of synthesizing their own energy and biomass 

through the sunlight and soil. Plant biomass is mainly comprised of carbohydrates, lipids, 

proteins, and nucleic acids, which are strongly dependent on the coupled cycling of C, N, and P 

(Goll, 2017). Carbohydrates and lipids are rich in C but low in N and P, whereas nucleic acids 

(DNA and RNA) are rich in N and P, and proteins are rich in N, but lack  P (Goll, 2017). C and 

O can be derived from the atmosphere through vine leaves and stems as CO2, which is used for 

the synthesis of sugars (White, 2009). Rubisco (Ribulose-1,5-bis-phosphate 

carboxylase/oxygenase) is the primary enzyme responsible for CO2 fixation during 

photosynthesis in C3 plants (Reich et al., 2009; Walker et al., 2014; Goll, 2017). Plant available 

N in soil is linked to the biological cycle of N within soil systems, specifically the N-fixation. 

Plant available P in soil is linked to weathering and degradation of organic and inorganic 

materials containing P within soils. N is a critical building block in all biomass and plays a large 
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role in the molecule structure of chlorophyll and is therefore linked to photosynthetic capacity 

(Field and Mooney, 1983; Losh et al., 2013; Goll, 2017). Both N and P are involved in plant 

growth, especially leaf area development, which in turn has restrictions on photosynthetic 

capacities (Reich et al., 2009). Additional O, along with H, are obtained through H2O, and can be 

derived from soil or the atmosphere (White, 2009).  

The above-ground anatomy of a grapevine consists of a perennial woody structure with 

tendrils which grow each year and attach themselves to a trellising systems granting the vine 

increased access to light as well as provide structural support (Skelton, 2007). The structural 

support is provided by rigid woody tissue reinforced with lignin, which stores high amounts of C 

derived from photosynthetic C-fixation (Goll, 2017). The perennial wood rootstock and trunk 

expands in diameter as the vine grows older, and is responsible for many vital transport and 

storage functions and can be referred to as a “sink” (Skelton, 2007; Keller, 2010). Plants have 

special cell organelles that help store their energy and excess reserves aiding in displacing 

temporal and spatial imbalances between nutrient supply and demand (Goll, 2017). The trunk is 

also a conduit for vascular transport of water and nutrients from roots to growing shoots as well 

as a pathway to transport products produced by the leaves and transported to the roots to support 

root growth (Skelton, 2007). The vascular tissues include xylem, responsible for transport of 

water and mineral nutrients taken up in the roots, and phloem, which transports nutrients from 

the above-ground tissues to the roots, and re-translocation of stored materials around the plant 

(Epstein and Bloom, 2005).  

Vine canes support foliage and budding shoots that flower and after pollination, turn into 

grapes known as the canopy (Skelton, 2007). Flower clusters (inflorescences) will turn into 

grapes once pollinated, with the majority of wine grape varietals producing two to three flower 
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clusters per cane depending on climatic conditions of that growing season (Skelton, 2007). Fruit 

is produced from the branching canes of wood that grew the previous year (Skelton, 2007). The 

annual growing season of a vine can be measured in six phenological stages: budbreak, bloom, 

veraison (onset of fruit ripening), harvest, leaf fall, and dormancy (Schreiner, 2016). Wine grapes 

typically have peak macronutrients K, Ca, Mg and micronutrients B, Zn, Mn, and Cu taken up 

between bloom and veraison, and consequently, the grapevines increase in total vine biomass 

(Schreiner, 2016).  

Soil Nutrients: Their Role in Grapevine Vitality  

Plant macronutrients are taken up from soil and converted into organic forms such as 

pigments, enzyme cofactors, lipids, nucleic acids, and amino acids (proteins) during plant 

nutrient assimilation (Taiz and Zeiger, 2010). While C, H, and O play an important role in 

grapevine dynamics, there are a total of sixteen essential elements needed for grapevine vitality. 

These are divided into the categories of macronutrients (C, H, O, S, Ca, Mg, K, Mn, Cl, P, N) 

and micronutrients (Fe, Zn, Cu, B, and Mo) (White, 2009). The majority of these essential 

elements are derived from the soil. Their availability is determined by a plethora of physical, 

biological, and chemical factors.  

Grapevine Macronutrients 

Sulfur 

Sulfur is a found in amino acids and is also a constituent of several coenzymes and 

vitamins (Taiz and Zeiger, 2010). Humus (soil organic matter) is the dominant reservoir for 

organic sulfur, which can be released through mineralization to SO4
2- and is principally lost due 

to leaching and runoff as well as easily volatilized (Sposito, 2008).  
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Calcium 

 Plants use Ca for the synthesis of new cell walls along with mitotoic spindle during cell 

division (Taiz and Zeiger, 2010). Soil Ca bonds to soil particles and their abundance and bio-

availability to plants is controlled by long-term weathering of minerals as well as pH and ligand 

type and concentration in soil solution (Essington, 2004). 

Magnesium 

 Magnesium is the coordinating ion of the porphyrin structure of a chlorophyll molecule 

and maintains a steric configuration (Fraústo da Silva and Williams, 1991; Epstein and Bloom 

2005; Taiz and Zeiger, 2010). Mg is a vital mineral nutrient through its role in activating more 

enzymes (e.g. such as enzymes needed for respiration, nucleic acid synthesis, and many 

photosynthetic reactions) than any other element (Epstein and Bloom, 2005). Soil Mg 

concentrations heavily depend on mineralogy, long-term weathering, as well as pH (Essington, 

2004).  

Potassium 

Potassium plays a role in the activating enzymes involved in respiration and 

photosynthesis (Taiz and Zeiger, 2010). Potassium is also known for its role in regulating the 

osmotic potential of plant cells (Taiz and Zeiger, 2010). Just like with Ca and Mg, plant available 

K is controlled by long-term weathering of minerals as well as pH and ligand type and 

concentration in soil solution (Essington, 2004).  

Manganese 

  Manganese is essential for the activation of several enzymes in the plant, specifically the 

enzymes involved in the Krebs cycle (Taiz and Zeiger, 2010). Mn is also controlled by soil 

mineralogy, long-term weathering, and pH conditions (Essington, 2004). 
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Chlorine 

Chlorine is responsible for the water splitting reaction in which O2 is produced during 

photosynthesis (Taiz and Zeiger, 2010). Cl availability is also controlled by long-term 

weathering, but unlike Ca, Mg, K, and P, it is negativity charged; thus, is easily lost in soil 

solution or through the atmosphere. Sea spray, aerosol deposition of nutrients, can be rich in Cl, 

Na, Mg, Ca, and S (White, 2009).  

Phosphorus 

Elemental phosphorus is extremely reactive and commonly bonds to four oxygen atoms 

resulting in phosphate (PO4
3-) and plants strictly take up phosphorus in the form of PO4

3- 

(Busman et al., 2002). Therefore plant available P always refers to the compound PO4
3-. P is 

especially important in plants for synthesis of nucleic acids, sugar phosphates, and phospholipids 

(Taiz and Zeiger, 2010). Dissolved PO4
3- is produced through the mineralization of humus and 

the dissolution of PO4
3- from adsorption to solid particles like clay (Sposito, 2008). There are 

three main soil P pools: solution P, active P, and fixed P (Busman et al., 2002). P in solution 

includes plant available P as PO4
3-, which is mobile in solution. P in solution can be depleted 

through plant uptake and is considered the smallest of the P pools in soils (Busman et al., 2002). 

Active P is instead bonded to the soil (not in solution) by being adsorbed to small soil particles 

such clays or organic compounds, or as PO4
3- salts of Ca, or Al. Active P can replace depleted P 

in solution through equilibrium and is the main and larger source of P for crops. Fixed P 

commonly refers to P mostly locked within crystalline structures as inorganic PO4
3-. To 

determine P concentrations in soil, it is vital to understand soil mineralogy, organic matter, as 

well as P nutrient cycling. Some conversion of fixed P to active P can occur in soil through 
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weathering and chemical processes (Busman et al., 2002). PO4
3- concentrations in solution are 

affected by soil erosion and by soil additions (inorganic and organic). 

Nitrogen 

Nitrogen is the macronutrient used in the highest concentrations, and is typically an 

ultimate limiting nutrient in soil alongside P. N plays an essential role in plant vitality by its use 

in the formation of proteins, enzymes, coenzymes, nucleic acids, chlorophyll, ATP, NADPH, 

and vitamins (Wermelinger, 1991). N takes as many as nine different forms corresponding to 

different oxidative states, but this research focuses on six different forms: NO3
-, NO2

-, N2, NH3, 

NH4
+, and organic N. While dinitrogen gas (N2) comprises ~79% of our atmosphere, it is not 

usable by most organisms, and only becomes available through N2-fixation by selected free-

living or symbiotic prokaryotes (Robertson and Groffman, 2015). There are four important soil 

nitrogen transformations in the N-cycle mediated by these soil microbes: N mineralization, N 

immobilization, Nitrification, and Denitrification.  

N mineralization is mediated by soil micro-organisms, primarily fungi and bacteria, that 

are excellent at converting organic detritus into more plant available forms. Just like all other 

organisms, microbes require N. If the organic detritus they consume is rich in N (low C:N ratio), 

they release mineralized N as by-products, thus converting organic N  forms such as detritus into 

inorganic forms such as PO4
3- which are more available to plants and microbes (Robertson and 

Groffman, 2015). Conversely, if the detritus they consume is low in N (high C:N ratio), their by-

products will be low in N thus withholding N within their own biomass leading to relative N 

immobilization (Robertson and Groffman, 2015). N mineralization and N immobilization can 

occur at the same time within a soil depending on the type of organic detritus being consumed.  
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Nitrification is the microbial oxidation of NH3 or NH4
+, into less reduced forms, e.g., 

NO2
- and NO3

-
 (Robertson and Groffman, 2015). Nitrification rates are driven by the 

concentration of NH4
+ in the soil, which is directly related to rates of N mineralization and N 

immobilization. NH3 and NH4
+ are in a pH-dependent equilibrium; under lower pH, NH4

+ 

dominates but may also be trapped in CEC sites such as soil organic matter, and charged clay 

surfaces while NH3 can be lost to volatilization or leaching (Robertson and Groffman, 2015). 

Because of their incapability to bond to soil particles (CEC, organic matter, and clay), anionic 

compounds NO2
- and NO3

- in soil solution are easily lost via gravitational processes and leaching 

(Robertson and Groffman, 2015). These compounds are also susceptible to denitrification 

(Robertson and Groffman, 2015). When N mineralization rates are high, nitrification will be 

elevated but higher N immobilization will reduce nitrification. Availability of NO3
- tends to 

exceed NH4
+ in well aerated and temperate soils due to increased aerobic microbial activity and 

elevated nitrification (Epstein and Bloom, 2005; Sposito, 2008).  

Denitrification is the process of reducing soil nitrates to N gases such as NO, N2O, and 

N2 (Robertson and Groffman, 2015) then this gaseous N is readily lost to the atmosphere 

(Sposito, 2008).  

Plant N Uptake and Assimilation 

Plants will take up N from the soil as NH4
+, NO3

-, but also possibly as dissolved organic 

N (DON), or as surface-sorbed NH4 on DON. Between NH4
+ and NO3

-, NH4
+ is the preferred 

inorganic N source as it may take less energy to metabolize and concentrations vary less both 

seasonally and spatially than NO3
- (Wermelinger, 1991: Epstein and Bloom, 2005; Sposito, 

2008).  In order for a plant to take up NO3
- or NH4

+ into root cells, there must be the right ion 

and charge balance and cells can efflux H+ to maintain ion uptake across the root cell membrane 
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(Epstein and Bloom, 2005). Once plants take up N as NO3
- and/or NH4

+ through their roots, plant 

cells assimilate the N into amino acids (Epstein and Bloom, 2005). The first critical step in 

assimilation is reduction of NO3
- to NO2

-, which involves nitrate reductase activity then nitrite 

reductase mediates production of ammonium and glutamine synthetase transforms the NH4
+ into 

organic compounds as the amino acid glutamine (Wermelinger, 1991). Overall, amino acids are 

made from glutamine and used for protein synthesis as well as synthesis of important molecules 

such as chlorophyll (Wermelinger, 1991). In grapevines, N is primarily stored, particularly 

during winter, as the amino acid arginine, which can be remobilized at the beginning of spring 

vegetative growth in the grapevine (Wermelinger, 1991). Grapevine stem samples were collected 

for this research during the veraison stage when the grapevine is heavily dependent on N 

reserves from within the plant system (Wermelinger, 1991). 

Grapevine Micronutrients  

Micronutrient elements necessary for plant growth include Fe, Zn, Cu, B, and Mo (White, 

2009). Other micronutrients include Ni and V (Taiz and Zeiger, 2010). Micronutrients form 

insoluble compounds and bond strongly to mineral particles and organic matter, therefore are 

typically less mobile in soils for plant nutrient uptake (Essington, 2004). Micronutrients are 

found in minerals and organic matter and become plant available through weathering of parent 

mineral to form soil solutions as well as organic chemical transformations (Sposito, 2008).  

Plant available metallic elements Fe, Cu, Zn, Mo, and Ni tend to be more plant available 

at low pH and are readily absorbed by clays (White, 2009). These metallic elements are 

important for electron transfer and energy transformations and precipitate as insoluble 

hydroxides as pH increases, with the exception of Mo, which is not affected by an increase in pH 

(White, 2009; Taiz and Zeiger, 2010).  

Iron is essential for the transfer of electrons in enzymes, and can be oxidized from Fe2+ to 
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Fe3+ and reduced back to Fe2+ as a transition metal (Taiz and Zeiger, 2010). Copper, like Fe, is 

associated with the transfer of elections in enzymes and redox reactions oxidizing from Cu2+ to 

Cu3+ (Taiz and Zeiger, 2010). Zinc is required for some enzyme activity and may be required for 

chlorophyll biosynthesis (Taiz and Zeiger, 2010). Molybdenum is a component of several 

enzymes including nitrate reductase and bacterial nitrogenase (Taiz and Zeiger, 2010). 

Molybdenum (Mo) is typically found in soil as an anion molybdate (MoO4
2-), and is strongly 

adsorbed to Fe and Al oxides at low pH (White, 2009). Unlike other metals, it becomes it 

becomes more available as pH increases (White, 2009). Nickel is used for the enzyme urease and 

is also used by nitrogen-fixing organisms (Taiz and Zeiger, 2010).  

The role of boron in plant functions is seemingly unclear but it is suggested that it plays a 

role in cell elongation, nucleic acid synthesis, hormone response, membrane function, and cell 

cycle regulation (Taiz and Zeiger, 2010). Soil boron commonly occurs as boric acid (H3BO3) 

until it reaches a pH greater than 8, where it then begins to dissociate and releases the borate 

anion B(OH)4
-, which is weakly absorbed by oxides (White, 2009).  

Nitrogen Isotopes: Biological Tracer 

Nitrogen has two naturally occurring stable isotopes and because N is essential to 

metabolic processes, it is uniquely suited as a biologic tracer to understand nutrient cycling 

across ecosystems (Pardo and Nadelhoffer, 2010). Fractionation occurs between 15N and 14N 

during physical, enzymatic, and other biological processes (Pardo and Nadelhoffer, 2010). 

Fractionation, especially enzymatic fractionation, naturally favors the lighter isotope 14N, and 

discriminates against the heavier isotope, 15N (Pardo and Nadelhoffer, 2010). In other words, 

samples with more negative 15N values would suggest an increased rate of fractionation, due to 
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discrimination against the heavier isotope via enzymatic reactions, compared to samples with a 

more positive 15N values.  
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STUDY RATIONALE  

While the DOCs of Jesi and Matelica are located less than 50 km apart and have minor 

climate variations, they consistently produce Verdicchio contrasting in wine flavor. Because of 

this well documented wine dichotomy (Bastianich and Lynch, 2002), I speculated that minor 

climatic variations and anthropogenic controls instrumented by the winemaking process are 

minimal, and that instead geological variations significantly contribute to wine characteristics. 

This research specifically addresses the potential role of geology, as it relates to soil-grapevine 

interactions and plant metabolic processes, exploring the Verdicchio wine flavor dichotomy 

between the DOCs of Jesi and Matelica.  

I aimed to evaluate geological and biological variations in Jesi and Matelica on three levels: 

1. Soil: Determine if there are geological variations. Soil variations will be characterized 

based on soil chemistry and composition through the selected analyses of soil texture, pH, 

organic matter, mineralogy, elemental and oxide concentrations, element concentrations 

(N, C, and P), base saturation, cation exchange capacity, and plant available nutrients 

(NO3
- and PO4

3-).  

2. Grapevine stems: Determine if there are chemical variations in grapevine stems. 

Grapevine stems were analyzed for elemental concentrations of N, C, and P. 

3. Soil-Grapevine Stem Interactions: Biological variations (rates of both amino acid 

synthesis in grapevine stems and microbial metabolism in soil) were interpreted through N 

isotopes. The number of N turnovers was then calculated using soil and grapevine stem N 

isotopic ratios in order to understand N cycling within individual plants throughout the 

growing season. Soil and grapevine stem N, C, and P concentrations were compared to 

quantify soil-plant nutrient interactions. Grapevine stem N and P concentrations were 
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further compared to soil plant available nutrients (NO3
- and PO4

3-).   
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METHODS 

 

Soil and grapevine stem samples were collected 22-27 July, 2016. This study was 

conducted at four vineyards in each DOC consisting of the excavation of one soil profile in each 

vineyard. One vineyard from each DOC was selected for the excavation of two soil profiles. The 

excavation of two soil profiles in one vineyard was originally executed to understand how soils 

were impacted when cultivated next to grapevines varying in age. Unfortunately, this was 

analysis was not able to be determined. This study focused on soil samples collected within eight 

vineyards and a total of ten soil profiles. Soil samples were collected at consistent depths of 3, 

10, 25, and 50 cm in each soil profile to avoid soil horizon inconsistencies due to 

geomorphologic variations. Grapevine stems were collected next to each soil profile and stripped 

of bark, leaving only woody plant tissue, which was then left to air dry. Soil samples were 

collected and left to air dry within 12 hours of sampling. The soil depth of 10 cm will be the 

focus depth of many analytical tests as it represents the zone of plant nutrient acquisition. A 

complete list of vineyard names, locations, soil profiles, as well as sample names can be found in 

Appendix-A, as samples will be referred to as Jesi or Matelica soil profiles 1, 2, 3, 4, and 5.  

GIS 

A digital elevation model (DEM) of the Italian provinces Ancona and Macerata, located 

in the Marche Region, were attained through Tarquini et al., 2007 and Tarquini et al., 2012 and 

were stitched together in a mosaic and projected to WGS_1984_UTM_Zone_32N.  A clip of 

each DOC was created by extracting the DOC shape of both Jesi and Matelica through Corel 

draw using figure 4 in Conte et al., 2006. Each DOC clip was georeferenced using easily 

identifiable reference points to obtain the best possible fit. A polygon was extracted and used to 

clip both DOCs to calculate elevation, slope, and aspect.  
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Statistics 

Differences between parameters of soil and grapevine stems between Jesi and Matelica 

were examined using 1-way ANOVA in Sigmaplot (v12.5, Systat Software Inc, San Jose, CA, 

USA) using p < 0.05 as significant.   

Grain Size:  Malvern Mastersizer 2000E 

Particle-size soil analysis was conducted on each soil profile at all sampling depths (3, 

10, 25, 50 cm). Each soil sample was dispersed in 20 mL of deflocculant (sodium metaphosphate 

(NaPO3 50 g/L), sonicated for 1 minute, and analyzed on a Malvern Mastersizer 2000E 

following Sperazza et al. (2004).  For each sample, soil grainsize classes were extracted and 

expressed in an overall percent notation (i.e. sand, silt, and clay). These values were then put into 

the United States Department of Agriculture (USDA) soil texture calculator to determine overall 

soil texture for each soil sample by plotting in a soil texture triangle.  

pH 

Soil samples were analyzed for pH by Ward Laboratories in Kearney, Nebraska 

according to Ward Laboratory (2014c). Soil pH was measured through the activity of ionized H+ 

in solution through a Ross Sure-Flow reference electrode and recorded based on a 1:1 soil:water 

ratio. 

Organic Matter %LOI 

Soil samples were analyzed by Ward Laboratories in Kearney, Nebraska on October 10th, 

2016 according to Ward Laboratory (2014d). Soil samples were dried at 105°C for 2 hours and 

once cooled, a random sample was collected using a 2 g scoop and placed in pre-weighed 

crucibles. Sample was then combusted in a muffle-furnace at 360°C for 2 hours. Samples were 
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then re-weighed and calculations were conducted in order to determine Loss On Ignition (%LOI) 

(i.e. organic matter) using equation 1. 

𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟏:  %𝐿𝑂𝐼 =
(dry weight − ashed weight)

dry weight
 𝑥 100 

Mineralogy (XRD) 

Approximately 3 g of individual soil samples were weighed and dried in a drying oven at 

~100oC. Once dried, soils were powdered using a tungsten carbide Rocklab Shatterbox. A D8 

Focus X-Ray Diffractometer (XRD) was used to determine the mineral assemblages at a constant 

soil depth at 10cm for each sample. Powdered samples were mounted randomly to avoid 

preferred orientation of the mineral grains. The XRD patterns were evaluated using Bruker’s 

EVA software and compared against the ICDD PDF2 to identify peaks. Because if soil 

heterogeneity and mineral transformations and degradations, quantitative mineralogical 

concentrations could not be determined, thus only semi-quantitate abundances were obtained on 

the XRD. 

Elemental and Oxide Concentrations (XRF) 

Approximately 3.0g of individual soil samples were weighed and dried in a drying oven 

at ~100oC. Once dried, soils were powdered using a tungsten carbide Rocklab Shatterbox. 

Samples were weighed on an analytical balance to 1.0000 g (+/- 0.0003) and placed in dry pre-

weighed crucibles and combusted in a muffle-furnace at 1050°C for 15 minutes and then re-

weighed in order to determine %LOI (organic matter) using equation 1.  

Glass beads were fused using a Claisse M4 Fluxer with a ratio of 1.1:11, 1.1000 g (+/- 

0.0003) of soil mixed with 11.0000 g (+/- 0.0003) of a 50/50 LiT/LiM lithium borate flux as well 

as with a lithium bromide non-wetting agent and 1.0000 g (+/-0.0003) of ammonium nitrate. The 

glass bead was then analyzed using a Bruker S4 Pioneer X-Ray Fluorescence (XRF) 
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spectrometer to measure major, minor, and a few trace element concentrations in units wt% or 

ppm. Elemental abundances were calculated using a calibration curve based on 11 USGS rock 

standards, following the methods of McHenry (2009).  

Cation Exchange Capacity and Base Saturation 

Soil samples were analyzed for CEC and base saturation by Ward Laboratories (2014a). 

The net negative charge amongst soil particles influences the amount of cation (typically plant 

nutrients) concentration and retention. The net negative soil charge is known as cation exchange 

capacity (CEC). The more negatively charged soil particles (organic matter and fine grained soil 

particles), the higher the CEC, therefore, the more positivity charged nutrients a soil can retain. 

CEC is expressed in milliequivalents per 100 g of soil (me/100g). Base saturation refers to the 

percent concentration of cations (Mg2+, K+, Ca2+, and Na+) released within sites of negatively 

charged soil particles (CEC). In order to determine cation concentrations, cations are released 

from CEC sites by using an extraction solution of 1N ammonium acetate. The cation (NH4
+) is 

then exchanged with cations originally bonded within negatively charged soil particle, thus 

releasing cations into the extraction solution. The known concentration of the extraction solution 

is then analyzed using an Inductively Couple Argon Cooled Plasma Spectrometer (ICAP) 

calculating base saturation, percent at concentration based on 100g of soil, as well as CEC. 

Elemental Analyzer: Nitrogen and Carbon  

Soil and grapevine stem samples were analyzed for C and N elemental content using an 

elemental analyzer (Flash EA1112 CE Elantech) following procedures by Bott et al. (2008). 

Grapevine stem samples were weighed at ~5 mg and encapsulated in tin boats ready for 

combustion. However, soil samples first had to be prepped to remove carbonate material to 

detract from C cross contamination. Soil were acid-washed in 0.1 N HCl, rinsed with de-ionized 
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water, and filtered. Once dried, soil samples were weighed at ~20 mg and encapsulated in tin 

boats for combustion.  

Total Phosphorus Content  

Total phosphorus content procedures were conducted according to Young et al. (2010) 

modified from Stainton et al. (1974). Soil and grapevine samples were baked in a muffle furnace 

at 500°C for 2 hours in acid-washed test tubes. Ashed samples were combined with 12.5 mL of 

MQ H2O and 2.5 mL of 1 M HCl. Phosphate standards were also prepared over the range 0-24 

µM. Samples and standards were then autoclaved at 120°C for 30 minutes, cooled and assayed 

for soluble molybdate-reactive phosphorus and read at 850 nm in a spectrophotometer (Parsons 

et al. 1984). Absorbance at 850 nm values for standards were plotted extracting a unique linear 

regression, thus deriving the equation used to convert sample Absorbance at 850 nm to PO4
3+ 

concentration.  

Analysis for Plant Available Nutrients: Nitrate and Phosphorus   

Nitrate 

Soil samples were analyzed for Nitrate by Ward Laboratories (2012). NO3
- was the plant 

available form of N analyzed in this research. Calcium phosphate (500 ppm) was used as an 

extraction solution, extracting ~5g of sample of soil solution, which was then analyzed using a 

Lachat FIA analyzer. Nitrate was reduced to nitrite by passing the sample through a column of 

copperized cadmium. Nitrite is then identified by reaction with sulfanilamide followed by N-(1-

naphyl) ethylenediamine dihydrochloride and absorbance read at a wavelength of 520 nm (Ward 

Laboratory, 2012).  
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Phosphorus: Olsen Phosphorus Method  

Soil samples were analyzed for plant available P using the Olsen method by Ward 

Laboratories (2014b). Olsen Phosphorus Method is a Sodium Bicarbonate extraction method and 

was established for soil calcareous in nature, specifically soils with 2% or more calcium 

carbonate (Frank et al., 1998; Ward Laboratory, 2014e). Procedures consist of 1g of soil 

combined with 20 mL of 0.5 N NaHCO3 extracting solution adjusted to a pH of 8.5. This 

solution is then shaken for 30 minutes and filtered and then compared to standard curves using a 

Lachat QuickChem at a wavelength of 880 nm. 

Nitrogen Isotopes  

Soil and grapevine stem samples were analyzed for N isotopes at the UC-Davis 

University of California Stable Isotope Facility using procedures documented on their website 

under Analytical Services: Carbon and Nitrogen in Solids titled Carbon (13C) and Nitrogen (15N) 

Analysis of Solids by EA-IRMS (UC Davis Stable Isotope Facility, 2017). Encapsulated samples 

were combusted and isotopically analyzed for N2(g) via an Elementar Vario Micro elemental 

analyzer that is interfaced to a PDZ Europa 20-20 IRMS isotope ratio mass spectrometer (IRMS) 

operating in continuous flow with an open-split gas-handling peripheral. Grapevine samples 

produce less ash after combustion than soil samples. Therefore, for ease of sample processing, 

grapevine samples were analyzed using a PDZ Europa ANCA-GSL elemental analyzer 

interfaced to a PDZ Europa 20-21 IRSM while soil samples were analyzed using an Elementar 

Vario EL Cube elemental analyzer, which has a more rapid interface to exchange ash-filled 

quartz inserts in the combustion column, interfaced to a PDZ Europa 20-20 IRMS. Grapevine 

samples were combusted at 1000°C in a chromium oxide and silvered copper oxide packed 

reactor. Once combusted, oxides removed and placed in a reduction reactor comprised of 
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reduced copper at 650°C. Soil were combusted at 1080°C in a copper oxide and tungsten (VI) 

oxide packed reactor. Once combusted, oxides removed and placed in a reduction reactor 

comprised of reduced copper at 650°C. Samples were run interspersed with several secondary 

and laboratory references including quality control references: peach leaves, enriched alanine, 

and nylon, and quality assurance references: glutamic acid data. Standards were selected based 

upon compositional similarity and previously calibrated against NIST Standard Reference 

Material. For the analysis period (March 2017) the results of the references are as follows: 

average peach leaves 15N +2.120.12‰ (known value +1.95‰); average enriched alanine 15N 

+41.130.20‰ (known value +41.13‰); average nylon 15N -10.310.09‰ (known value -

10.3‰); average glutamic acid 15N -6.910.10‰ (known value -6.8‰). All isotopic results are 

expressed in the conventional per mil () notation 𝛿 =  (
𝑅𝐴

𝑅𝐵
− 1) 1000, where RA is the isotopic 

ratio of the unknown, and RB is the isotopic ratio of a known reference material. Nitrogen isotope 

data is referenced against Air. 

Nitrogen Turnover  

In order to understand the potential differences in plant metabolic processes between Jesi 

and Matelica, the plant N turnover was simulated using a stable isotope-based progress-variable 

model (Cerling et al., 2007). The progress variable, F (Equation 2), defines the time-dependent 

conversion of stable isotopic compositions from some initial condition towards and equilibrium 

condition as time approaches infinity and has the following relationships (Cerling et al., 2007): 

Equation 2: 𝐹 =
𝛿𝑡−𝛿𝑒𝑞

𝛿𝑜−𝛿𝑒𝑞
= 𝑒−𝜆𝑡 

where δt, δeq, and δo are the delta values (or isotopic ratio, R) at time of t, at equilibrium, and at 

the initial condition, respectively. The rate constant is expressed as λ. 
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 For a situation in which more than one sink is present, we can re-express the progress 

variable equation to account for each sink and their characteristic N turnover in order to model 

the full system of source to multiple simultaneous sinks (Equation 3). 

Equation 3: 
𝛿𝑡−𝛿𝑒𝑞

𝛿𝑜−𝛿𝑒𝑞
= ∑ 𝑥𝑖𝑒

−𝜆𝑖𝑡 = 𝑥1𝑒−𝜆1𝑡𝑛
𝑗 + 𝑥2𝑒−𝜆2𝑡 + 𝑥3𝑒−𝜆3𝑡 … 𝑥𝑗𝑒−𝜆𝑗𝑡 

where x is the fractional abundance of the ith sink. 

 Boundary conditions of this model are the δeq and δo terms, where δeq is the observed 

isotopic composition of grapevine stems, and the initial condition, δo, is the observed isotopic 

composition of soil. Conversion of delta notation (δ) to isotopic ratios (R) was performed 

utilizing the definition of δ and the known isotopic ratio of N2(g) in Air, which is used as an 

international reference for N isotopes. Isotopic ratios were calculated to interpret the source to 

sink N interactions and are better used to analyze individual N complexities within soil-

grapevine interactions. Characteristic rate constants for each sampled grapevine stem, λ, was 

determined through an exponential regression on the modeled isotopic values bounded by our 

observed boundary conditions. The modeled isotopic values change in accord to the rate 

constants for a selection of amino acids (Finlay et al., 1988), and are thus only relevant for this 

ensemble of amino acid sinks. The characteristic rate constant λ (hours-1) of individual grapevine 

stems were converted to the half-life, t1/2 (hours) (Equation 4). 

𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟒: 𝑡1/2 =
Ln(2)

λ
 

Since the grapevine stems were sampled at one timepoint during the growth season we 

lack observation of turnover and fluctuation of N over time. Thus, in order to better understand 

how these characteristic rate constants relate to actual productivity for a given grapevine, half-
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life was converted the number of N turnovers (τ) elapsed throughout the growing season based 

upon our observed boundary conditions (Equation 5): 

𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟓: τ =

−𝐿𝑛(
𝑁(𝑡)

𝑁(𝑜)
)

         
𝐿𝑛(2)

𝑡1/2
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RESULTS 

Soils 

Texture, pH, Organic Matter Content  

Jesi soil profile 1 was texturized as slightly more coarse in soil texture (silt loam) 

compared to counterpart vineyards, which were texturized as silt (Appx. B). Similarly, Matelica 

soil profiles 4 and 5 were texturized as silt loam compared to counterpart vineyards, which were 

texturized as silt (Appx. C). Jesi and Matelica shared similar soil pH (p > 0.05) at the depth of 

10 cm in depth with Jesi at a pH of 8.36±0.21 and Matelica at a pH of 8.26±0.11. However, soil 

organic matter at 10 cm depth was significantly different between the DOCs (p = 0.001) with 

3.42±0.72% in Matelica and 1.80±0.21% in Jesi. There was a negative correlation between soil 

pH and organic content within each DOC (Fig. 3); as organic matter increased, soil pH decreased 

and Jesi exhibited a more negative slope than Matelica. See Appendix D for a complete list of 

Jesi and Matelica vineyard pH and organic matter content. 

 

 

 

 

 

 

 

 

R2=0.83 R2=0.32 

Figure 3: Relationship between soil pH and organic matter for Jesi and 

Matelica DOCs. Both DOCs exhibit a negative trend, but Jesi exhibits a 

more negative slope than Matelica. Lines fitted by linear regression. 
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Mineralogy, Elemental, and Oxide Concentrations  

Through semi-quantitative analysis, Jesi and Matelica were determined to have 

differences in mineralogical compositions and concentrations at a soil depth of 10 cm, with the 

most critical difference noted in dolomite abundances. Jesi vineyard soils, with the exception of 

soil profile 1, were determined to have dolomite (CaMg(CO3)2), whereas Matelica vineyards 

were determined to be all lacking dolomite (Table 2). Jesi vineyards had higher concentrations 

of calcite (CaCO3) and albite (NaAlSi3O8) than Matelica (Table 2). However, Matelica soil 

profiles had higher concentrations of microcline (K(AlSi3O8)) and montmorillonite 

((Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2•nH2O) in comparison to Jesi soil profiles (Table 2). A 

complete table of mineral assemblages determined by XRD can be found in Appendix E. 

Soil elemental and oxide concentrations were determined using XRF in units wt% (Fig. 

4A) and ppm (Fig. 4B). A complete list of Jesi and Matelica soil profile elemental and oxide 

concentrations can be found in Appendices F, G, H, I. Mean elemental and oxide concentrations 

as well as 1-way ANOVA tests can be found in Appendix J. Only one oxide and two elemental 

concentrations were found to be significantly different between DOCs; MnO ppm (p = 0.008), 

Co ppm (p = 0.031), and V ppm (p = 0.048) (Fig. 4B and Appx. J). Soil mineralogy influences 

both elemental and oxide concentrations, which highlights higher concentrations of %CaO (Fig. 

4A) and %MgO (Fig. 4A and 5) in Jesi, consistent with respective higher calcite and dolomite 

abundances analyzed in XRD (Table 2). Mean Jesi %CaO and %MgO were 16.3±0.045% and 

2.46±0.012% in comparison to Matelica at 11.0±0.075% and 1.46±0.0020%, respectively.  

Specifically, Jesi soil profiles 4 and 5 were measured to have increased %MgO 

concentrations compared to other Jesi vineyards. These higher %MgO concentrations correlate 

with XRD data, which showed that Jesi soil profiles 4 and 5 were also the soil profiles that had 
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the highest dolomite abundances. A similar correlation can be noted in Jesi soil profiles 1, which 

was the only soil profile in the DOC of Jesi that lacked dolomite, mimicking %MgO 

concentrations in Matelica. Elements with statistical errors >12% or with concentrations less 

than two times the Lower Limits of Detection are labeled as Not Detected (ND).  

This is also consistent with higher %Mg base saturation concentrations in Jesi (Table 3). 

Matelica was also found to have an average %SiO2 concentration of 53.6±0.090%, higher than 

that of Jesi at 46.4±0.077% (Appx. J). 

 

 

 

Soil Profiles Calcite Dolomite Microcline Albite Montmorillonite 

     Jesi 

1 xxx - xx xx x 

2 xxx x x xx x 

3 xxx x xx xx - 

4 xxx xx - xx - 

5 xxx xx - xx - 

 Matelica 

1 xxx - x xx x 

2 xx - x x x 

3 xx - x x x 

4 xxx - xx x x 

5 - - xx x x 

(xxx) High concentration; (xx) Moderate concentration; (x) Low concentration; 

(-) None detected 

 

Table 2: Select semi-quantitative mineralogy abundances for both Jesi and 

Matelica at a soil depth of 10 cm. Determined using XRD.  
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Figure 4: Elemental and oxide concentrations in Jesi and Matelica soils measured 

by XRF in units wt% (A) and ppm (B). *MnO, *Co, and *V are statistically 

different between DOCs (p < 0.05, 1-way ANOVA). Bars (+/- standard deviation) 

represent the average of 5 soil profile samples for each DOC.  
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Base Saturation and CEC 

Variations in base saturation displays similar trends as in soil mineralogy (XRD) and 

elemental concentrations (XRF) (Table 3).  A complete table of individual soil profile base 

saturation (%Mg, %K, %Ca, and %Na) and CEC values can be found in Appendix K. The %Mg 

between DOCs was found to be significantly different (p = 0.025) with Jesi at a higher 

concentration at 8.8±3.63 %Mg compared to Matelica at 4.2±0.84 %Mg. Other base saturation 

values %K, %Ca, and %Na were found to be less variable between DOCs (p > 0.05) (Table 3). 

CEC between DOCs were determined as almost significantly different (p = 0.057) with Matelica 

measured at 41.20±6.02, compared to Jesi at 35.02±1.62 (Table 3).  

Figure 5: Soil %MgO at 10 cm in depth for individual soil profiles in Jesi (yellow) 

and Matelica (blue).  
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Total N Content wt% and Plant Available NO3
- wt% 

Mean total soil N content was significantly different (p = 0.008) with higher 

concentrations in Matelica at 0.17±0.040 wt% than Jesi at 0.10±0.015 wt% (Table 4). However, 

plant available NO3
- between DOCs was not significantly different (p > 0.05) (Table 4). 

Furthermore, aside from soil profile 4 in Matelica, which has a plant available NO3
- 

concentration at 0.0158 wt%, Jesi and Matelica have very similar plant available NO3
- 

concentrations (Fig. 6, Table 4, and Appx. N).  

Soil N content was also noted to show a positive correlation with organic matter in both 

DOCs (Fig. 7A). Refer to Appendices L and M for a complete list of soil N concentrations for 

Jesi and Matelica at each soil depth within soil profiles.  

 

 

Test Jesi 

Mean (SD) 
Matelica 

Mean (SD) 
p-value 

 

Base Saturation %Mg 
8.8 

(3.63) 

4.2 

(0.84) 
*0.025 

Base Saturation %K 
4.2 

(1.48) 

4.4 

(0.89) 
0.803 

Base Saturation %Ca 
86.0 

(4.53) 

90.4 

(0.89) 
0.066 

Base Saturation %Na 
1.0 

(0.00) 

0.6 

(0.55) 
0.086 

CEC 
35.02 

(1.62) 

41.20 

(6.02) 
0.057 

Table 3: Base saturation and CEC soil concentrations at 10 cm in depth 

between both DOCs. *%Mg was significantly different between the DOCs 

(1-way ANOVA).  
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Test Jesi 

Mean (SD) 
Matelica 

Mean (SD) 
p-value 

 

Total N Content wt% 
0.10 

(0.015) 

0.17 

(0.040) 
*0.008 

Plant Available NO3
- 

wt% 

0.0024 

(0.0011) 

0.0057 

(0.0060) 
0.376 

Total C Content wt% 
1.13 

(0.57) 

1.79 

(0.87) 
0.192 

Total P Content 

wt% 

0.10 

(0.017) 

0.12 

(0.018) 
0.076 

Plant Available P: 

Olsen P Method wt% 

0.012 

(0.0058) 

0.026 

(0.015) 
0.076 

C:N 
10.66 

(4.13) 

10.15 

(2.35) 
0.816 

C:P 

 

10.94 

(5.27) 

14.96 

(6.00) 
N/A 

N:P 
1.00 

(0.12) 

1.44 

(0.21) 
*0.004 

R² = 0.0037 R² = 0.7847
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Figure 6: Plant available NO3
- is plotted against soil N. Jesi shows a 

largely invariant trend, whereas Matelica is depicted with a positive 

slope. Lines fitted by linear regression. 

Table 4: Soil macronutrient content and plant available N and P between 

DOCs measured at a soil depth of 10 cm. *Total N Content wt% and 

*N:P were found to be significantly different between the DOCs (1-way 

ANOVA).  
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Total C Content wt% 

While mean soil total C content are not significantly different, Matelica soils have a 

higher mean value at 1.79±0.87 wt% compared to Jesi at 1.13±0.57 wt% (Table 4). Soil total C 

contents correlates positively with organic matter in both DOCs (Fig. 7B).  Refer to Appendices 

L and M for a complete list of soil C concentrations for Jesi and Matelica. 
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Figure 7: Soil total N content (A), C content (B), and P content 

(C) in relationship to soil organic matter. All show positive 

correlations except for Jesi soil P vs. organic matter, which is 

slightly negative. Lines are fitted by linear regression.  
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Total P Content wt% and Plant Available P wt%  

Mean soil total P content and plant available P were not statistically different (p > 0.05) 

between DOCs with Jesi total P content at 0.10±0.017 wt% and plant available P at 

0.012±0.0058 wt%, and Matelica total P content at 0.12±0.018 wt% and plant available P at 

0.026±0.015 wt% (Table 4). Thus, Matelica has slightly higher plant available P in soil in 

comparison to Jesi. Moreover, soil total P contents correlated positively with organic matter in 

Matelica (R2 0.0615), but shows a weaker correlation in Jesi (R2 0.0294) (Fig. 7C). Both DOCs 

exhibited a positive relationship between plant available P and soil P content as depicted in 

figure 8. Refer to Appendices L and M for a complete list of soil P concentrations for both Jesi 

and Matelica and Appendix N for a complete list of soil plant available P at 10 cm in depth. 
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Figure 8: The relationship between plant available P and total P in 

soils of the two DOCs. Matelica exhibited a more positive correlation 

with a R2 value of 0.619 compared to Jesi at 0.298. Lines fitted by 

linear regression. 
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Soil: Elements N, C, and P 

 Macronutrient elements N, C, and P were plotted against one another in figure 9 for each 

DOC. Figure 9A shows a positive correlation seen in both DOCs; as soil C concentrations 

increase, soil N concentrations also increase. Figure 9B shows a positive correlation seen in both 

DOCs; as soil C concentrations increase, soil P concentrations also increase. Figure 9C shows a 

positive correlation seen in both DOCs; as soil N concentrations increase, soil P concentrations 

also increase.  

Elements N, C, and P were also noted to be strongly related to organic content (Fig. 7) 

and can be further noted in figure 9 with Matelica continuously showing higher concentrations 

in N, C, and P in comparison to Jesi. Furthermore, N:P is significantly different in the two DOCs 

(p = 0.004) (Table 4). 
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Figure 9: Soil elements C, N, and P depict positive correlations 

when plotted against one another for all 5 soil profiles in each 

DOC (A) N vs. C (B) P vs. C (C) P vs. N. Lines fitted by linear 

regression. 
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Grapevine Stems 

Total N, C, and P Content wt% 

While mean total grapevine stem N contents were not statistically different between 

DOCs (p > 0.05) (Table 5), a higher concentration was noted in Matelica (±0.086) than Jesi 

(±0.039). Mean total C content between DOCs were very similar with Jesi at 45.12±0.50 wt% 

and Matelica at 45.34±0.34 wt% (Table 5). Mean total P content was statistically different (p = 

0.016) with higher concentrations in Jesi at 0.24±0.046 wt% compared to Matelica at 0.17± 

0.032 wt% (Table 5). Refer to Appendix O for a complete list of grapevine stem N, C, and P 

concentrations. 

 

 

Test Jesi 

Mean (SD) 
Matelica 

Mean (SD) 
p-value 

 

Total N Content 

wt% 

0.43 

(0.039) 

0.49 

(0.086) 
0.140 

Total C Content 

wt% 

45.12 

(0.50) 

45.34 

(0.34) 
0.438 

Total P Content 

wt% 

0.24 

(0.046) 

0.17 

(0.032) 
*0.016 

C:N 
106.82 

(9.10) 

94.14 

(16.93) 
0.178 

C:P 
190.59 

(38.30) 

278.14 

(56.18) 
*0.021 

 

N:P 
1.80 

(0.45) 

3.06 

(0.99) 
*0.033 

 

Grapevine Stems: Elements N, C, and, and P 

Macronutrient N, C, and P concentrations show weak negative relationships in stem 

contents (Fig. 10).  Grapevine stem C:P ratios (p = 0.021) and N:P ratios (p = 0.033)  were 

determined to be statistically different between DOCs (Table 5).  

Table 5: Grapevine stem macronutrients N, C, and P concentrations in 

wt% as well as elemental ratios. *Total P Content, *N:P, and *C:P are 

statistically different between DOCs (1-way ANOVA). 
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Figure 10: The relationship between grapevine stem elements 

C, N, and P across both DOC (A) N vs. C (B) *P vs. C (C) *P 

vs. N (1-way ANOVA). Lines fitted by linear regression. 
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Soil-Grapevine Stem Comparisons 

Soil-Grapevine Stem N Interactions  

  A positive correlation between soil and grapevine stem N concentrations for both DOCs 

was determined (Fig. 11). As soil N content increased, grapevine stem N content increased with 

a much stronger positive relationship in Matelica (R2 value of 0.6917) in comparison to Jesi (R2 

value of 0.0004) (Fig. 11A). There is also a positive correlation between soil plant available 

NO3
- and grapevine stem N content in both DOCs (Fig. 11B). Again, Matelica soil profile 4 has 

a plant available NO3
- concentration of 0.01580 wt%, which is higher than mean Matelica plant 

available NO3
- at 0.0057 wt% and is somewhat skewing the data (Fig. 11B). With Matelica soil 

profile 4 aside, plant available NO3
- and grapevine stem N concentrations between DOCs would 

be more similar.  
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Figure 11: The relationship between grapevine stem N concentrations 

and soil N and soil plant available NO3
-. (A) There is a positive 

relationship between grapevine N and soil N in Matelica but no clear 

relationship in Jesi. (B) As soil plant available NO3
- increases, grapevine 

stem N concentrations also increase for both Jesi and Matelica. Lines 

fitted by linear regression.  
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Soil-Grapevine Stem P Interactions 

 Soil P and grapevine stem P concentrations depict variable correlations between DOCs 

(Fig. 12A). Jesi depicts a positive correlation, as soil P concentration increases, grapevine stem P 

concentration increases (Fig. 12A). However, Matelica plant available P appears to largely 

unaffected with increasing soil P concentrations (Fig. 12A). Moreover, a positive correlation was 

observed between soil plant available P and grapevine stem P concentrations in both DOCs (Fig. 

12B). It is important to note that while Jesi has decreased plant available P concentrations, 

grapevine P concentrations are higher. 

 A correlation in soil %MgO and grapevine stem P content was further noted, specifically 

in Jesi (Fig. 13). In Jesi, as soil %MgO increases, grapevine stem P concentrations increase, 

whereas Matelica depicts a weak to negative correlation due to lack of %MgO variability (Fig. 

13).  
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Figure 12: Soil P and plant available P are plotted against grapevine 

stem P concentrations to graphically depict soil-grapevine stem 

interactions. (A) As soil P content increase, Jesi grapevine stem N 

content increases, while Matelica expresses a weaker correlation (B) 

As plant available P increases, grapevine stem P increases slightly for 

both Jesi and Matelica. Lines fitted by linear regression.  
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Soil-Grapevine Stem N Isotopes 

 Grapevine stems were found to be more depleted in 15N (more negative δ15N values) in 

comparison to soil (soil depth 10 cm), which were found to be more enriched in 15N (more 

positive δ15N values) (Fig. 14). This variation in δ15N values between soil and grapevine stems 

relates to differences in N transformation processes occurring. Matelica soil samples were 

analyzed as slightly more enriched in δ15N (6.30±1.04‰) compared to Jesi, which were slightly 

less enriched (5.23±0.40‰). Moreover, grapevine stems in Matelica were more enriched in δ15N 

(2.61±2.46‰) compared to Jesi (-0.17±1.06‰). 
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Figure 13: Graph depicts the correlation between grapevine stem P 

content in relation to soil %MgO. Jesi depicts a positive correlation 

between %MgO and grapevine stem P. Matelica, conversely, shows a 

more negative trend. Lines fitted by linear regression. 
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Soil-Grapevine Stem Nitrogen Turnover  

 Plant N cycling throughout the growing season was modeled by calculating the N 

turnover (τ) occurring within the plant using individual soil and grapevine stem N isotopic ratios 

(source sink relationship). The number of N turnovers occurring within the plant throughout the 

growing season were interpreted to be significantly different between DOCs (p = 0.032) with 

Jesi having an higher N turnover at 1.409±0.003 than Matelica at 0.791±0.6 (Table 6). Matelica 
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Figure 14: δ15N values derived from analysis of 10 cm soil and 

grapevine stem samples from the two DOCs.  Jesi (A) shows lower 

δ15N than Matelica (B) for both soil, and grapevine stem samples.  
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soil profiles 2 and 3 have the highest N turnover values in comparison to its other soil profiles 

(Table 6). These two soil profiles (Matelica soil profiles 2 and 3) are also the soil profiles with 

the most depleted δ15N values in the DOC of Matelica (Fig. 14); thus, showing a similar 

relationship with Jesi N turnover values. 

  

 

  

Table 6: Characteristic rate constants (λ) were determined through individual exponential 

regressions modeled throughout the growing season and were used to calculate the half-life (t1/2). 

The half-life was then used to calculate the N turnover (τ) occurring within the grapevine.  

 

  N(t) N(o) λ t1/2 τ 

 
Grapevine Stem 

Isotopic Ratio 

Soil Isotopic 

Ratio 

Characteristic 

Rate 

Constants 

Half-Life  

(hours) 
N Turnover  

    Jesi 

1 0.367 0.369 1.72E-06 162.58 1.412 

2 0.367 0.370 1.75E-06 159.79 1.410 

3 0.368 0.370 1.54E-06 181.58 1.407 

4 0.368 0.370 1.47E-06 190.23 1.405 

5 0.368 0.370 1.23E-06 227.35 1.411 

 Matelica 

1 0.370 0.371 9.00E-07 84.46 0.381 

2 0.367 0.370 1.97E-06 141.95 1.408 

3 0.368 0.370 1.29E-06 216.77 1.404 

4 0.369 0.370 2.70E-07 281.53 0.382 

5 0.369 0.370 8.50E-07 89.43 0.381 
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DISCUSSION 

Understanding how soil plays a potential role in noted Verdicchio wine character 

between the DOCs of Jesi and Matelica was conducted through characterizing and interpreting 

physical, chemical, and biological variations in both soil and grapevine stem samples. 

Soil pH, Texture, Organic Matter, CEC, and Base Saturation 

While there was little variation in soil pH between Jesi (8.36) and Matelica (8.26), both 

DOCs were tested as being more basic than recommended within a vineyard setting of 5.5-7.5 

(White, 2009). Soils more basic in nature could result in plant nutrient deficiencies, particularly 

in elements P, K, Mg, Fe, Zn, and Cu (Keller, 2010). Macronutrient elements P, K, and Mg are 

recommended to be greater than 1%, whereas micronutrient elements Fe, Zn, and Cu are 

recommend to be around 1,000 ppm or less depending on the nutrient (1%=10,000 ppm) (White, 

2009). All soils showed sufficient elemental concentrations of nutrients P, K, Mg, Fe, and Zn 

(Appx. J, L, and M). Just north of the Marche region of Italy, a soils study in the Veneto region, 

was also determined to be basic in nature with a mean pH of 8.1 and characterized with abundant 

carbonate-rich minerals (Dal Ferro et al., 2012). Overall, because Jesi and Matelica were found 

to have sufficient soil nutrient concentrations, it is assumed that the basic soil pH had a minimum 

impact on important nutrient availability (Epstein and Bloom, 2005). Further investigations 

would be needed to understand how Verdicchio, the grape varietal, has adapted, or how 

rootstock selection, has been impacted by higher pH to associated soil-root-plant interactions.   

Soil texture is important for water retention, and conversely, water drainage. Finer 

grained soils tend to retain water better than larger grains, which tend to promote soil drainage. 

While very similar, Matelica soil profiles were slightly coarser in texture with two soil profiles 
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texturized as silt loam (soil profiles 4 and 5), while only one soil profile in Jesi was categorized 

as silt loam (soil profile 1). The remaining soil profiles in both Jesi (soil profiles 2, 3, 4, and 5) 

and Matelica (soil profiles 1, 2, and 3) were texturized as silt. Silt soils have low clay and a 

maximum of 20% sand, whereas silt loam soils have low clay content and slightly higher sand 

content (25-35%); thus, slightly coarser textures. Slightly coarser soil texture in Matelica soil 

profiles could promote lower soil water retention, therefore, lower soil moisture in comparison to 

Jesi soil profiles. Soil texture, along with soil organic matter, plays an important role in CEC in 

terms of cation retention. Finer grained soil (increased surface area) and organic rich soils (high 

in organic colloids, which also have an increased surface area) have a higher net negative charge 

due to their surface area distribution. Organic matter concentrations between DOCs were 

significantly different (Fig. 3) with Matelica having almost double the organic matter at 

3.4±0.72% compared to Jesi at 1.80±0.21%. Cations are largely associated with plant nutrients 

and are positivity charged ions, thus attracted to net negative charged particles (i.e. negative soil 

sites). An increased net negative charge (i.e. increased finer grain sizes and organic colloids) has 

the potential to trap more cations, therefore retaining potential nutrients. These trapped nutrients 

have the possibility to become reactivated as part of the soil solution for plant nutrient uptake. 

Because soil texture between Jesi and Matelica soil profiles are very similar, Matelica’s higher 

organic matter concentrations is most likely accountable for Matelica’s slightly higher CEC at 

41.02% in comparison to Jesi at 35.02%. Base cations, cations that are trapped in CEC sites, 

represent quantitative concentrations of certain plant nutrient Mg, K, and Ca. Base cations are a 

product of soil mineralogy and soil mineral water splitting, and thus, easily leached out and 

precipitated into soil solution if it were not for soil CEC (Essington, 2004). While base cations 

are dictated by soil mineralogy, their ability to be retained within the soil depends on CEC. Base 
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cations %K and %Ca did not vary significantly between DOCs, but base cation %Mg in Jesi soil 

profiles (8.8%) was over double than that of Matelica soil profiles (4.2%), most likely a direct 

result of soil mineralogy. %Mg distribution is further correlated with mineralogical and oxide 

concentrations as discussed below.  

Mineralogy, Elemental, and Oxide Concentrations 

Soil mineralogy was similar between DOCs with a few distinct and critical exceptions. 

Jesi showed a higher dolomite abundance in comparison to Matelica, which lacked dolomite 

(Table 2). Mineralogical variations in soil are largely dictated by geologic bedrock and 

according to Conte et al. (2006), the DOC of Matelica is more carbonate-rich in comparison to 

the DOC of Jesi. However, because the DOCs are large and this study’s sampling sites are few, 

geological variation must be considered on a smaller spatial scale. For instance, selected 

vineyards in Jesi are located in the southern portion the DOC, dominated by pelagic limestone 

deposits, thus explaining higher carbonate abundances/concentrations seen in analytical tests 

(Conte et al., 2006). The DOCs would be better represented by gathering more sample sites 

throughout the entirety of the DOC.  

Redirecting back to Jesi and Matelica’s dolomite distribution (CaMg(CO3)2), Mg 

concentrations were found to be higher in Jesi soil profiles compared to Matelica. Higher Jesi 

Mg concentrations were determined in both base saturation %Mg concentrations (above) as well 

as in XRF %MgO concentrations. Mean Jesi soil profiles were analyzed as having almost double 

the %MgO concentrations compared to mean Matelica soil profiles (Fig. 5). As mentioned in the 

background section introducing grapevine macronutrients, Mg plays a large role in biological 

processes such as in chlorophyll and photosynthesis reactions (Epstein and Bloom, 2005). These 

higher soil Mg concentrations in Jesi could affect plant Mg concentrations. Increased plant Mg 
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concentrations could have several biological impacts, such as increased enzyme activity in the 

photosynthetic protein rubisco (Keller, 2010).  

Soil Concentrations: N, C, and P 

Soil elements C, N, and P are dependent on soil organic matter content and are critical for 

many biogeochemical cycles and macronutrients for plant (Sterner and Elser, 2002; Goll, 2017). 

Availability of N and P from soil organic matter (decomposed detritus) is important for soil 

fertility. Jesi exhibited lower soil N content due to lower organic content, and consequently, has 

lower concentrations of plant available N (e.g. NO3
-). Soil P is a combination of both inorganic 

(dependent on soil mineralogy and composition) and organic (dependent on organic matter and 

soil texture) forms (Prasad et al., 2017). Total soil P showed a positive correlation with organic 

content in Matelica soils, suggesting P supply from organic breakdown (Fig. 7B), although, this 

relationship was not demonstrated in Jesi soils. Inorganic P mineral forms were not identified via 

XRD, and some accessory P-bearing minerals, such as apatite (Ca5(PO4)3(F,Cl,OH)), may not 

have been detected. However, for plant function, measures of plant available P in soils are more 

useful and is clearly influenced by organic element concentrations within soil (Busman et al., 

2002). Overall, it is important to note that higher soil P and plant available P concentrations in 

Matelica are most likely a direct result of higher soil organic content.   

Grapevine Stem Concentrations: N, C, and P 

While soil provides plant available nutrients, it does not guarantee the plant will be able 

to take up the available nutrients; therefore, plant elemental concentrations do not directly reflect 

soil composition (Epstein and Bloom, 2005). For example, while Matelica soil profiles had 

higher plant available P, grapevine stem biomass had lower P concentrations than Jesi grapevine 
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stems, which experienced lower soil plant available P (Fig. 12B). This could be a result of 

nutrient co-dependence, specifically nutrients P and Mg, which are known to be affected when 

either nutrient becomes limited (Skinner and Matthews, 1990). Mg concentrations in grapevine 

leaves were observed to increase with higher P supply to roots (Skinner and Matthews, 1990), 

suggesting that plant Mg uptake is dependent on sufficient soil P concentrations. Severe plant 

Mg-deficiencies manifest in leaf chlorosis (depleted leaf chlorophyll), which has downstream 

affects in photosynthetic capacities as well as other metabolic processes (Skinner and Matthews, 

1990; Taiz and Zeiger, 2010). According to Skinner and Matthews (1990), grapevines leaves 

with Mg-deficiencies were not attributed to low Mg concentrations in soil but were related to P-

deficiency. They also noted leaf photosynthesis became limited when leaf Mg concentrations 

were low (Skinner and Matthews, 1990). In this research, higher %MgO concentrations in Jesi 

soils were correlated with higher grapevine stem P concentrations, while Matelica, which had 

limited soil %MgO, had lower grapevine stem P concentrations (Fig. 13). This study suggests a 

possible correlation between grapevine P concentrations and soil Mg concentrations; higher soil 

Mg concentrations could promote increased grapevine P uptake and assimilation. Overall, 

increased plant P concentrations could have potential downstream effects on metabolic processes 

that involve P, specifically photosynthesis, which is also reliant on P for its role in plant energy 

metabolism (Keller, 2010).  

Grapevine C concentrations are very similar between DOCs reflecting the majority of a 

grapevine’s biomass. As for N, soil plant available NO3
- and grapevine stem N concentrations 

expressed a positive and similar correlation. Grapevine stem N content was more reflective when 

plotted against soil plant available NO3
- in both DOCs, which could suggest some N limitation 
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from soil N supply. However, according to White (2009), adequate total soil N concentration are 

within 0.9-1.2%, which a large majority of tested soil profiles lie within (Appx. L and M).  

N Isotopes and N Turnover: Interpreting Biologic Rates 

Because N fractionation occurs during physical or enzymatic processes (Pardo and 

Nadelhoffer, 2010), I speculate that δ15N values would suggest biological rates dependent on the 

type of material (soil vs. plant).  

For soil, slightly more negative δ15N values in Jesi suggests a higher rate of metabolic 

activity, such as soil transforming N compounds (possibly soil N-fixation). The soil N-cycle is 

primarily mediated by microorganisms and strongly dictates plant available N forms (Robertson 

and Goffman, 2015). Nitrification tends to produces 15N-depleted NO3
-, whereas ammonification 

can produce variable 15N values that are similar to or slightly more negative than the pre-

mineralized organic matter (Létolle, 1980; Handley and Raven, 1992; Pardo and Nadelhoffer, 

2010). Soil is an active and open system; therefore, 𝛿15N enrichments and/or depletions are 

dependent on soil inputs, outputs, and internal fluxes (Pardo and Nadelhoffer, 2010). Mean 

Matelica soil profiles were analyzed as having a higher concentration of plant available NO3
-

(0.00536±0.0061 wt%), suggesting higher nitrification in comparison to mean Jesi soil profiles at 

0.00244±0.0011 wt%. If Matelica soil profile 4 was not included, Jesi and Matelica would share 

very similar mean plant available NO3
- concentrations. Moreover, soil organic matter (rich in N 

and associated with NH4
+ fractionation) was also determined to be more concentrated in 

Matelica with mean values almost double the concentration in mean Jesi values. It would have 

been expected that Matelica soil would had less enriched 𝛿15N soil values in comparison to Jesi 

soil. However, mean Matelica soil 𝛿15N values were more enriched at 6.30±1.04‰ in 

comparison to mean Jesi soil 𝛿15N values at 5.23±0.04‰, which were more depleted. Our soil 
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isotopic values are therefore inconsistent with soil composition data, suggesting much more 

complicated biological processes. Overall, soil reflects a large N reservoir and is continuously 

active. Sampling throughout the growing season as well as measuring N inputs from both 

aboveground biomass and internal inputs would further aid in understanding the soil 

fractionation between Jesi and Matelica at a more detailed level (Nadelhoffer and Fry, 1994).   

Plants, in comparison to soil, reflect a lower magnitude reservoir of N and, instead, 

exhibit a more rapid turnover due to biosynthesis and assimilation of N (Nadelhoffer and Fry, 

1994). Plant foliar 𝛿15N values tend to be depleted in comparison to soil 𝛿15N values likely due 

to a combination of N-source isotopic composition and turnover of N inside the leaf from 

metabolic activity (Nadelhoffer and Fry, 1994; Höberg, 1997; Pardo et al., 2007; Pardo and 

Nadelhoffer, 2010). This study instead focuses on woody tissue and speculated N fraction to 

correlate with rates in amino acid synthesis (primary source of N in plant tissues) (Wermelinger, 

1991; Nadelhoffer and Fry, 1994). Plant tissues exhibit routine enzymatic synthesis and turnover, 

which are then primarily stored within the woody perianal tissue (Wermelinger, 1991). Jesi 

grapevine stems were found to have a more depleted δ15N value at -0.17±1.06‰, compared to 

Matelica grapevine stems at 2.61±2.46‰ (Fig. 14). While woody tissues (grapevine stems) do 

not photosynthesize, they do rely on imported photosynthate and act as storage sites for amino 

acids and proteins (Keller, 2010). I, therefore, speculate that plant N isotopes in the grapevine 

stems could reflect rates of amino acid synthesis through their role as storage sites for amino 

acids. In other words, increased N fraction (more negative δ15N values) in grapevine stems 

would reflect higher amino acid storage, therefore, suggesting a higher rate of amino acid 

synthesis occurring within that plant system. Phenological stages must be considered when 

discussing variations in potential amino acid storage within woody tissue (grapevine stems), as 



www.manaraa.com

61 

 

storage concentrations can be strongly dictated depending on the season. Jesi and Matelica 

grapevine stems were sampled during the veraison stage.   

Durante et al. (2016), analyzed light elements in soil, grapevine stems, and grape juice in 

order to establish their efficiency as a tracer for wine provenance, or geographical origin. N 

isotopic values measured in their study for both soil and grapevine stems are similar to the values 

in this study; soil samples were notably more enriched in 𝛿15N, ranging from +9‰ to +3‰, in 

comparison to grapevine stems samples, ranging from +4‰ to -4‰ (Durante et al., 2016). They 

speculated that bulk soil samples were enriched in 𝛿15N compared to grapevine stems due to the 

higher biological demands required during N uptake and assimilation resulting in increased 

isotope fractionation (Durant et al., 2016).  

In order to better comprehend N’s source (soil) - sink (grapevine stem) relationship 

throughout the growing season, the number of N turnovers (or amino acid turnovers) within the 

plants were simulated using a stable isotope-based progress-variable model (Cerling et al., 2007). 

This model took into account the critical growing season between bloom and harvest and used 

known amino acid turnover rates that were sourced from Finlay et al. (1988). Jesi was found to 

have a higher N turnover throughout the growing season at 1.41±0.0030, compared to Matelica 

at 0.791±0.56. This model further highlights possible variations in amino acid storage within the 

grapevine stem as well as possible correlating assumptions in amino acid synthesis. Overall, 

between N isotope and N turnover interpretations, I speculate that Jesi grapevine stems have a 

notably higher amino acid synthesis in relation to Matelica grapevine stems suggesting increased 

biological/metabolic activity.  
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Verdicchio: Understanding the Wine Flavor Variation 

Tannins, a phenolic compound, are known to impact wine structure, quality, aging 

potential, and are often associated with bitterness and astringency (Pambianchi, 2003). There are 

many phenolic compounds and they all have the potential to influence wine flavor profiles in 

myriad ways (Donovan et al., 1998; Keller, 2010). Studies have observed calcareous vineyard 

soils to produce grapes with enhanced smoothness and mild wine tannin character, whereas 

siliceous vineyard soils have been linked to more robust grapes with stronger wine tannin 

character (Conte et al., 2006; Burns, 2012). Verdicchio from Jesi was characterized as smooth, 

whereas Verdicchio from Matelica was characterized as strong and bold (Bastianich and Lynch, 

2002; Conte et al., 2006), both correlating with respective variations in soil composition. While 

both DOCs were determined to be calcareous, Jesi soils were determined to be more carbonate-

rich due to more dolomite and calcite concentrations, whereas Matelica soils had slightly less 

calcite and no dolomite, but had higher siliceous concentrations compared to Jesi. How might 

these soil variations impact wine tannin character?  

Higher soil Mg concentrations in Jesi could play a role in increased Mg plant uptake. 

This increased Mg uptake could promote chlorophyll production/activity, due to its leading role 

involved in the molecule and photosynthetic enzyme activation (Keller, 2010). Jesi grapevine 

stems were also determined to have higher P concentrations compared to Matelica, again 

possibly impacting biologic functions, most specifically, photosynthesis. As Jesi grapevine stems 

were interpreted to have a higher rate of amino acid synthesis and measured P concentrations, it 

could, in turn, reflect Jesi having a higher rate of chlorophyll synthesis as well as promote 

photosynthetic capacities. Differences in photosynthesis could affect both sugar and metabolic 

pathways such as phenolic compound character, specifically tannins, which are known to 
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contribute to wine flavor and wine characteristics (Donovan et al., 1998; Pambianchi, 2003). A 

comprehensive study by Gerendàs and Führs (2013) correlated increased %MgO concentrations 

in the soil to decreased phenolic compound traits, possibly correlating to more mild wine tannin 

characteristics (cf. Jesi), in comparison to decreased %MgO concentrations to increased phenolic 

compound traits, possibly correlating to wine with stronger tannin characteristics (cf. Matelica).  

Overall, I hypothesize that increased soil Mg concentrations in Jesi, due to dolomite, 

could promote increased P plant uptake as well as promote chlorophyll synthesis, and therefore, 

affect metabolic processes associated with wine tannin character.  
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FUTURE WORK 

 This research focused on primarily on soil-grapevine interactions, and would benefit from 

a more holistic approach encompassing in-depth analyses and observations on climate, slope, 

aspect, geomorphology, anthropogenic controls, etc., in order to better evaluate all factors that 

could be attributed to wine flavor variations.  

While the four selected vineyards and five soil profiles in each DOC resulted in notable 

variations in mineralogy and nutrient parameters, the study would benefit with increased sample 

sites and sample replication, which would improve the statistical power of our analyses. In 

addition, grapevine leaves, instead of stems, would be the ideal plant tissues sample as they are 

the site of photosynthetic reactions, so are more metabolically active, and the synthesis of 

chlorophyll could be quantified. The analysis of grape juice and/or wine for tannins and other 

phenolic compounds, wine pH, and wine trace elements would further aid in understanding the 

soil-grapevine interactions and impacts on plant nutrition on fruit yield and quality.   

A more comprehensive temporal approach could also be taken analyzing the vineyard 

soil and grapevine (stems and leaves) throughout the phenological stages, starting from bud 

break to harvest, in order to more accurately understand the N turnover within the plant. This 

would result in an increased understanding of the chemical variations occurring in soil and 

grapevines throughout the growing season.  
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CONCLUSIONS  

While the DOCs of Jesi and Matelica are in close proximity, they have certain distinct 

soil characteristics that strongly impact potential soil-grapevine interactions. Mineralogically, 

Jesi was noted to be relatively abundant in dolomite (CaMg(CO3)2) in comparison to Matelica, 

which lacked dolomite. This dolomite distribution resulted in increased soil Mg concentrations in 

Jesi evidenced in both XRF and base saturation tests. Biological rates were evaluated through the 

analysis of N isotopes on both soil and grapevine stems. Most notably, Jesi grapevine stems were 

interpreted to have a higher rate of amino acid synthesis in comparison to Matelica grapevine 

stems. Furthermore, Jesi grapevine stems were calculated to have double the N turnover 

throughout the growing season compared to Matelica grapevine stems. Overall, I speculate that 

this difference in grapevine stem amino acid synthesis is attributed to soil mineralogy, 

specifically dolomite in Jesi soils. As a magnesium carbonate, dolomite might impact plant Mg 

availability, and possible plant P uptake, as Jesi grapevine stems also had higher P concentrations 

despite higher plant available P in Matelica soils. Elements N, P, and Mg could affect 

photosynthetic capacities and downstream production of secondary phenolic compounds, 

specifically tannins, which has a strong effect on wine flavor. The soil-grapevine interaction 

elucidated in this terroir study could help advance the use of natural soil additives (e.g. dolomite) 

to guide wine producers in achieving a desired flavor profile. 

This research does not make a commentary on whether one style of Verdicchio is better 

than the other, it does, however, critically address how soil could affect grapevines and in turn, 

affect Verdicchio flavor characteristics noted in both Jesi and Matelica.  
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APPENDICES 

APPENDIX A: 

Soil Profile, Sample ID, and Location 

Jesi Soil Profiles 

1. Azienda Vinicola Sparapani Frati Bianchi 
(Via Barchio, 12 60034 Cupramontana-AN-Italia)  

J-FB-001 

N 43° 26’ 43.9”, E 13° 05’ 36.1”, Altitude: 218m 

 

2. Azienda Agricola Mancini Benito  
(Via S. Lucia, 7 60030 Modie Di Maiolati Sp.-AN-Italia) 

J-M-001 

N 43° 29’ 24.0”, E 13° 08’ 20.0”, Altitude: 165m 

 

3. Vignamato  
(Via Battinebbia, 4 60038 San Palo Di Jesi-AN-Italia) 

J-VA-001 

N 43° 27’ 27.3”, E 13° 09’ 58.9”, Altitude: 209m 

 

4. La Staffa (1) 
(Via Castellaretta, 19 Staffolo 60039-AN-Italia) 

J-LS-001 (2004 - younger) - (steeper-slope, but lower in elevation)  

N 43° 26’ 07.3”, E 13° 10’ 07.7”, Altitude: 330m 

 

5. La Staffa (2) 
(Via Castellaretta, 19 Staffolo 60039-AN-Italia) 

J-LS-002 (1972 - older) - (slope-gentle, top of hill) 

N 43° 26’ 03.2”, E 13° 10’ 07.0”, Altitude: 345m 

 

Matelica Soil Profiles 

1. Gagliardi  
(Via A. Merloni, 5 62024 Matelica-MC-Italia) 

M-G-001 

N 43° 16’ 21.4”, E 12° 58’ 58.5”, Altitude: 391m 

 

2. Azienda Agricola Filippo Maraviglia  
(Via Pianné, 584 62024 Matelica-MC-Italia)  

M-M-001 

N 43° 15’ 39.5”, E 13° 02’ 09.0”, Altitude: 409m 

 

3. Belisario  
(Via A. Merloni, 12 62024 Matelica-MC-Italia)    

M-B-001 
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N 43° 15’ 05.7”, E 12° 59’ 09.9”, Altitude: 460m 

 

4. ColleStefano (1) 
(Loc. Colle Stefano n.3 62022 Castelraimondo-MC-Italia)  

M-CS-001 (younger - at least 8 years old) 

N 43° 12’ 23.4”, E 13° 01’ 38.6”, Altitude: 415m 

 

5. ColleStefano (2)  
(Loc. Colle Stefano n.3 62022 Castelraimondo-MC-Italia)  

M-CS-002 (older - at least 30 years old) 

N 43° 12’ 22.1”, E 13° 01’ 35.5”, Altitude: 422m 
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APPENDIX B: 

Jesi Soil Texture Triangle  

 

 

 

 

 

 

 

 

 

 

 

Jesi vineyard soil texture triangle representing each soil profile at each depth of 

3, 10, 25, 50 cm in depth. 

 
 
Jesi vineyard soil texture triangle representing each soil profile at each depth of 

3, 10, 25, 50 cm in depth. 
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APPENDIX C: 

Matleica Soil Texture Triangle  

 

 

 

 

 

 

 

 

 

 

 

Matelica vineyard soil texture triangle representing each soil profile at each 

depth of 3, 10, 25, 50 cm in depth. 

 
 
Matelica vineyard soil texture triangle representing each soil profile at each 

depth of 3, 10, 25, 50 cm in depth. 
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APPENDIX D: 

Jesi and Matelica Soil pH and Organic Matter 

 

Soil Profile 1:1 Soil pH Organic Matter %LOI 

Jesi   

1 8.4 1.7 

2 8.6 1.5 

3 8.5 1.8 

4 8.1 2 

5 8.2 2 

Matelica   

1 8.4 2.4 

2 8.3 3 

3 8.2 3.9 

4 8.3 4.2 

5 8.1 3.6 

 

  
Jesi and Matelica soil pH and organic matter content 

at individual soil profiles and at a soil depth of 10 

cm. Average Jesi had slightly more basic pH and 

less organic content than Matelica.  
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APPENDIX E: 

Complete Soil Semi-Quantatative Mineralogy  

 

Soil 

Profile 

Quartz Calcite Dolomite Microcline Albite Muscovite Kaolinite Vermiculite Montmorillonite 

  Jesi 

1 xxx xxx - xx xx x - x x 

2 xxx xxx x x xx xx x x x 

3 xxx xxx x xx xx x x x - 

4 xxx xxx xx - xx xx x x - 

5 xxx xxx xx - xx xx x x - 

Matelica 

1 xxx xxx - x xx xx x x x 

2 xxx xx - x x x x x x 

3 xxx xx - x x xx x x x 

4 xxx xxx - xx x x - x x 

5 xxx - - xx x x - x x 

 

 

  

Relative mineral abundances for individual soil profiles at a soil depth of 10 cm was 

determined using XRD. Jesi is relatively abundant in dolomite (CaMg(CO3)2) compared to 

Matelica, which showed no evidence of dolomite at 10 cm in depth. Jesi also has overall 

increased concentrations of calcite (CaCO3) and albite (NaAlSi3O8) compared to Matelica. 

They both have consistent high concentrations of quartz (SiO2), as well as relative 

concentrations fairly distributed within the DOC’s for minerals muscovite 

(KAl2(AlSi3O10)(F,OH)2) and vermiculite (Mg,Fe++,Al)3(Al,Si)4O10(OH)2 •4(H20). 

 

 
Relative mineral abundances were determined using XRD. Jesi is relatively abundant in 

dolomite (CaMg(CO3)2) compared to Matelica, which showed no evidence of dolomite at 10 

cm in depth. Jesi also has overall increased concentrations of calcite (CaCO3) and albite 

(NaAlSi3O8) compared to Matelica. They both have consistent high concentrations of quartz 

(SiO2), as well as relative concentrations fairly distributed within the DOC’s for minerals 

muscovite (KAl2(AlSi3O10)(F,OH)2) and vermiculite (Mg,Fe++,Al)3(Al,Si)4O10(OH)2 •4(H20). 
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APPENDIX F: 

Total Jesi XRF Oxide Concentrations wt% 

 

Soil Profile and Soil Depth 

(cm) 

 

SiO2 Al2O3 Fe2O3 TiO2 MgO CaO Na2O K2O 

Jesi         

1 (3) 57.80 10.20 3.46 0.39 1.14 11.40 1.11 2.43 

1 (10) 58.20 10.30 3.46 0.39 1.17 11.60 1.13 2.43 

1 (25) 57.10 10.50 3.60 0.41 1.25 12.10 1.08 2.34 

1 (50) 50.00 10.10 3.78 0.41 1.46 15.90 0.86 2.05 

2 (3) 41.30 9.29 3.75 0.42 1.95 21.30 0.70 1.86 

2 (10) 41.00 9.22 3.82 0.41 1.93 21.50 0.71 1.84 

2 (25) 41.00 10.10 3.90 0.46 2.16 20.70 0.59 1.97 

2 (50) 42.70 10.40 4.25 0.45 2.11 19.40 0.72 1.98 

3 (3) 46.00 10.50 4.11 0.47 1.80 17.30 0.70 2.00 

3 (10) 45.40 10.60 4.12 0.47 1.82 17.90 0.69 1.96 

3 (25) 47.50 10.80 4.19 0.49 1.77 16.70 0.74 1.97 

3 (50) 47.70 10.80 4.17 0.49 1.77 16.50 0.75 1.96 

4 (3) 38.50 9.90 4.15 0.47 4.30 19.20 0.50 2.09 

4 (10) 38.50 9.97 4.15 0.47 4.27 18.80 0.51 2.06 

4 (25) 42.00 7.97 3.27 0.41 5.18 18.20 0.69 1.70 

4 (50) 37.90 9.78 4.13 0.46 4.47 19.00 0.50 2.03 

5 (3) 46.50 12.00 4.58 0.56 3.02 12.30 1.00 2.43 

5 (10) 48.80 12.60 4.93 0.59 3.12 11.50 0.99 2.34 

5 (25) 55.20 14.40 5.53 0.69 2.49 6.53 1.18 2.60 

5 (50) 49.10 13.00 5.06 0.60 2.82 11.30 1.08 2.42 

 

 

  

Total Jesi XRF oxide concentrations (wt%) for individual soil profiles and soil depths (cm). 
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APPENDIX G: 

Total Jesi XRF Oxide and Elemental Concentrations ppm 

 

Soil Profile and Soil Depth (cm) 
   

MnO Zn Ni Sr Ba Zr V Cr Co Ce 

Jesi           

1 (3) 825 38 43 261 429 111 70 107 10 47 

1 (10) 807 34 38 265 412 118 64 104 10 52 

1 (25) 820 37 46 273 449 116 71 72 12 47 

1 (50) 740 38 41 365 338 101 76 94 ND 50 

2 (3) 847 64 41 574 315 100 67 83 6 39 

2 (10) 863 45 46 576 348 98 79 77 8 43 

2 (25) 832 39 48 595 285 93 93 116 8 36 

2 (50) 974 51 51 567 283 110 87 112 12 40 

3 (3) 870 62 54 388 345 126 91 111 11 45 

3 (10) 865 66 56 407 323 110 81 133 9 50 

3 (25) 874 63 52 367 340 122 92 116 10 42 

3 (50) 957 76 57 362 383 125 70 109 11 43 

4 (3) 878 74 61 440 324 90 83 104 13 40 

4 (10) 846 77 63 437 301 84 78 133 10 37 

4 (25) 674 47 40 366 336 103 75 103 7 40 

4 (50) 813 74 49 422 298 92 89 113 10 42 

5 (3) 817 67 46 161 402 147 79 107 13 51 

5 (10) 723 57 68 151 461 160 90 110 14 55 

5 (25) 915 85 76 149 474 175 93 136 22 56 

5 (50) 851 82 67 171 457 153 85 114 21 47 

 

  

Total Jesi XRF oxide and elemental concentrations (ppm) for individual soil profiles and 

soil depths (cm). 
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APPENDIX H: 

Total Matelica XRF Oxide Concentrations wt% 

 

Soil Profile and Soil Depth 

(cm) 

 

SiO2 Al2O3 Fe2O3 TiO2 MgO CaO Na2O K2O 

Matelica         

1 (3) 40.10 9.37 3.42 0.43 1.27 21.60 0.72 1.98 

1 (10) 43.30 9.92 3.59 0.46 1.33 20.40 0.79 2.07 

1 (25) 42.30 9.82 3.59 0.45 1.32 21.20 0.76 2.02 

1 (50) 43.90 10.00 3.64 0.46 1.33 20.00 0.79 2.04 

2 (3) 52.40 12.50 5.12 0.60 1.60 11.10 0.82 1.96 

2 (10) 56.30 13.40 5.40 0.65 1.67 7.92 0.88 2.05 

2 (25) 56.30 13.20 5.29 0.64 1.65 8.42 0.89 2.01 

2 (50) 56.60 13.20 5.35 0.64 1.65 8.23 0.90 2.02 

3 (3) 52.90 12.70 5.10 0.63 1.59 9.85 0.62 2.04 

3 (10) 56.20 13.90 5.55 0.67 1.67 6.75 0.67 2.16 

3 (25) 53.40 13.30 5.32 0.65 1.67 10.00 0.62 2.03 

3 (50) 51.80 12.70 5.20 0.63 1.58 7.47 0.63 1.99 

4 (3) 47.30 9.84 3.85 0.42 1.24 16.50 0.86 2.02 

4 (10) 46.20 9.80 3.83 0.42 1.25 17.30 0.76 2.00 

4 (25) 46.10 9.95 3.91 0.43 1.28 17.80 0.77 1.99 

4 (50) 52.80 11.50 4.56 0.51 1.44 12.10 0.87 2.11 

5 (3) 65.30 13.20 5.15 0.64 1.38 2.68 1.10 2.34 

5 (10) 65.90 13.30 5.22 0.64 1.39 2.59 1.11 2.32 

5 (25) 65.70 13.40 5.21 0.64 1.38 3.14 1.10 2.29 

5 (50) 62.80 12.90 5.09 0.66 1.36 3.67 1.01 2.16 

 

  

Total Matelica XRF oxide concentrations (wt%) for individual soil profiles and soil depths 

(cm). 
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APPENDIX I: 

Total Matelica XRF Oxide and Elemental Concentrations ppm 

 

Soil Profile and Soil Depth (cm) 
   

MnO Zn Ni Sr Ba Zr V Cr Co Ce 

Matelica           

1 (3) 908 69 47 468 329 114 78 77 8 40 

1 (10) 903 53 53 494 372 125 78 94 10 41 

1 (25) 957 55 43 503 323 131 75 88 8 45 

1 (50) 864 45 43 460 318 122 61 75 7 42 

2 (3) 1250 87 61 206 393 150 91 101 21 51 

2 (10) 1350 95 63 205 438 168 108 124 18 57 

2 (25) 1260 80 71 213 413 159 92 117 21 56 

2 (50) 1230 82 71 211 385 167 99 117 22 57 

3 (3) 1640 76 61 135 464 142 112 127 17 54 

3 (10) 1770 96 84 142 488 167 107 127 26 62 

3 (25) 1610 88 72 162 515 147 112 109 22 60 

3 (50) 1660 85 66 124 472 149 97 114 21 58 

4 (3) 1220 63 46 319 347 114 64 108 12 45 

4 (10) 1270 74 51 317 349 105 86 86 13 45 

4 (25) 1190 66 38 332 325 108 66 97 7 47 

4 (50) 1310 57 56 253 345 130 87 109 14 50 

5 (3) 1490 93 68 139 429 174 89 116 28 63 

5 (10) 1820 81 61 154 423 173 97 140 26 55 

5 (25) 1440 70 62 162 444 193 90 135 19 54 

5 (50) 1490 66 59 163 422 172 108 127 20 55 

 

 

 

  

Total Matelica XRF oxide and elemental concentrations (ppm) for individual soil 

profiles and soil depths (cm).  

 
 



www.manaraa.com

81 

 

APPENDIX J: 

Mean Jesi and Matelica XRF Elemental and Oxide Concentrations 

 

 

 

Elemental &  

Oxide 

Concentrations 

Jesi 

Mean (SD) 
Matelica 

Mean (SD) 
p-value 

 

MnO ppm 
820.8 

(59.4) 

1422.6 

(379.9) 
* 0.008 

Co ppm 
10.2 

(2.3) 

18.6 

(7.3) 
* 0.031 

V ppm 
78.4 

(9.3) 

95.2 

(13.1) 
* 0.048 

Zn ppm 
55.8 

(16.9) 

79.8 

(17.7) 
0.060 

Ni ppm 
54.2 

(12.3) 

62.4 

(13.1) 
0.337 

Sr ppm 
367.2 

(163.7) 

262.4 

(146.8) 
0.318 

Ba ppm 
369 

(66.1) 

414 

(55.1) 
0.276 

Zr ppm 
114.0 

(28.7) 

147.6 

(30.7) 
0.112 

Cr ppm 
111.4 

(23.3) 

114.2 

(23.1) 
0.853 

Ce ppm 
47.4 

(7.3) 

52.0 

(8.7) 
0.392 

SiO2% wt% 
46.4 

(0.077) 

53.6 

(0.090) 
0.212 

Al2O3% wt% 
10.5 

(0.013) 

12.1 

(0.0093) 
0.191 

Fe2O3% wt% 
4.10 

(0.0054) 

4.72 

(0.0093) 
0.233 

MgO% wt% 
2.46 

(0.012) 

1.46 

(0.0020) 
0.111 

CaO% wt% 
16.3 

(0.045) 

11.0 

(0.075) 
0.216 

Na2O% wt% 
0.805 

(0.0025) 

0.842 

(0.0017) 
0.794 

K2O% wt% 
2.13 

(0.0025) 

2.12 

(0.0013) 
0.963 

TiO2% wt% 
0.464 

(0.00080) 

0.568 

(0.0012) 
0.143 

Mean elemental and oxide concentrations for DOCs in units ppm and wt% 

at a soil depth of 10 cm. Statistical variations (p-value) are also listed (1-

way ANOVA). 
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APPENDIX K: 

Jesi and Matelica Base Saturation and CEC  

 

 

Soil Profile %Mg %K %Ca %Na CEC (%) 

Jesi      

1 5 5 89 1 33.1 

2 14 6 79 1 35.7 

3 7 4 88 1 37.4 

4 11 4 84 1 34.5 

5 7 2 90 1 34.4 

Matelica      

1 3 5 91 1 36.5 

2 5 3 91 1 47.3 

3 4 4 91 0 48.1 

4 4 5 90 0 35.7 

5 5 5 89 1 38.4 

 

  

Jesi and Matelica base saturation and CEC values at 

individual soil profiles at a soil depth of 10 cm. 
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APPENDIX L: 

Jesi Soil Elemental Concentrations N, C, and P wt% 

 

 

Soil Profile and Soil Depth (cm) 
 

N C P 

Jesi     

1 (3) 0.120 0.957 0.0918 

1 (10) 0.086 0.633 0.0855 

1 (25) 0.081 0.592 0.0872 

1 (50) 0.067 0.407 0.0800 

2 (3) 0.088 0.816 0.0997 

2 (10) 0.096 0.816 0.1167 

2 (25) 0.063 0.457 0.1078 

2 (50) 0.052 0.252 0.1036 

3 (3) 0.130 1.115 0.1111 

3 (10) 0.106 0.762 0.1103 

3 (25) 0.116 0.842 0.1013 

3 (50) 0.109 0.780 0.0974 

4 (3) 0.160 2.498 0.1189 

4 (10) 0.126 1.970 0.1201 

4 (25) 0.047 2.353 0.0959 

4 (50) 0.114 1.888 0.1080 

5 (3) 0.195 2.652 0.1208 

5 (10) 0.099 1.452 0.0854 

5 (25) 0.089 0.924 0.0797 

5 (50) 0.096 1.076 0.0857 

 

  

Jesi N, C, and P concentrations (wt%) for individual soil 

profiles and soil depths (cm). 
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APPENDIX M: 

Matelica Soil Elemental Concentrations N, C, and P wt% 

 

 

Soil Profile and Soil Depth (cm) 
 

N C P 

Matelica     

1 (3) 0.174 1.537 0.1373 

1 (10) 0.161 1.366 0.1285 

1 (25) 0.171 1.495 0.1339 

1 (50) 0.173 1.504 0.1255 

2 (3) 0.141 1.363 0.0907 

2 (10) 0.117 1.019 0.0864 

2 (25) 0.107 0.912 0.0820 

2 (50) 0.103 0.850 0.0843 

3 (3) 0.174 1.782 0.1260 

3 (10) 0.170 1.654 0.1191 

3 (25) 0.152 1.499 0.1077 

3 (50) 0.188 1.880 0.1182 

4 (3) 0.251 2.713 0.1338 

4 (10) 0.230 3.283 0.1289 

4 (25) 0.168 1.840 0.1272 

4 (50) 0.134 1.264 0.1149 

5 (3) 0.176 1.850 0.1200 

5 (10) 0.171 1.628 0.1248 

5 (25) 0.128 1.123 0.0939 

5 (50) 0.099 0.867 0.0885 

 

  

Matelica N, C, and P concentrations (wt%) for individual 

soil profiles and soil depths (cm). 
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APPENDIX N: 

Soil Plant Available Nutrients wt% 

 

 

Soil Profile 
 

NO3
- P 

Jesi   

1 0.00230 0.0120 

2 0.00200 0.0123 

3 0.00120 0.0074 

4 0.00250 0.0216 

5 0.00420 0.0075 

Matelica   

1 0.00420 0.0433 

2 0.00100 0.0085 

3 0.00460 0.0146 

4 0.01580 0.0383 

5 0.00120 0.0235 

 

 

  

Jesi and Matelica plant 

available NO3
- and P values 

(wt%) at individual soil profiles 

at a soil depth of 10 cm. 
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APPENDIX O: 

Grapevine Stem Elemental Concentrations N, C, and P wt% 

 

 

Soil Profile  
 

N C P 

Jesi    

1 0.403 42.681 0.193 

2 0.400 45.519 0.258 

3 0.418 44.446 0.298 

4 0.412 44.868 0.272 

5 0.493 45.090 0.200 

Matelica    

1 0.556 44.879 0.202 

2 0.385 45.393 0.173 

3 0.485 45.131 0.139 

4 0.599 45.659 0.131 

5 0.444 45.637 0.196 

 

 

 

 

Jesi and Matelica N, C, and P 

element concertation values (wt%) 

at individual soil profiles at a soil 

depth of 10 cm. 
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